Птихเฉкท́

Eppaoía

Өє́ $\mu \alpha$: To Aбúp $\mu \alpha$ то Δ íктио

TEI Пعıраıú 'T $\mu \eta \dot{\mu} \mu$ Auro $\mu \alpha$ гіб μ ои́ Птихıккŋ่ Ерүабїк:

Піvaкая перıєхоцв่v ω v

1 ЕІइАГ $\Omega \Gamma Н$ 4
1.1 H APXIKH I $\triangle E A$ 4
1.2 ЕІІАГ Ω ГН $\Sigma T H N ~ \triangle I K T Y \Omega \Sigma H$ 5
1.2.1 Мєт α ор α $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega \nu$ 5
1.2.2 ' $Е \lambda \varepsilon \gamma \chi \circ \varsigma ~ \sigma ф \alpha \lambda \mu \alpha ́ \tau \omega \nu$ 7
1.2.3 H $\sigma \tau \rho \omega \mu \alpha ́ \tau \omega \sigma \eta$ OSI 8
1.2.3.1 Елітєбо 7: Ефариоүढ́v 9
 9
1.2.3.3 Eлítをסо 5: इuvóסou 9
1.2.3.4 Елітєঠо 4: Мєт α оро́я, 9
1.2.3.5 Епілгбо 3: Δ เкти́ou 10
 10
1.2.3.7 Eлínとסо i: Фибเкó 11
2 ENEYPMATA $\triangle I K T Y A$13
2.1 I I TOPIA EN \sum YPMA $\Omega \mathrm{N} \triangle I K T Y \Omega N$ 13
2.2 ПР Ω TOKO $\wedge \wedge A ~ E N \Sigma Y P M A T \Omega N ~ \triangle I K T Y \Omega N$ 16
2.3 ПРОТОКО $\triangle A$ EN Σ YPMAT Ω N $\triangle I K T Y \Omega N ~ \Sigma H M E P A$ 17
2.4 TO ETHERNET TOY TEI ПEIPAIA19
2.5 TO ETHERNET TOY A 2 YPMATOY $\triangle I K T Y O Y$. 21
2.5.1 Mikrotik Router 21
2.5.2 PoE Switches 23
2.5.3 Access Points 23
2.5.4 \sum ঠ́үкрıণŋ LAN - WALN 24
3 A 2 YPMATA $\triangle I K T Y A$ 27
3.1 I ITOPIA A YYPMAT $\Omega \mathrm{N} \triangle I K T Y \Omega N$ 27
3.2 APXH \triangle EITOYPГEIA $T \Omega N$ A Y YPMAT $\Omega \mathrm{N} \triangle I K T Y \Omega N$ 28
3.2.1 $\mathrm{H} \mu \varepsilon \tau \alpha ф о \rho \alpha ́ \alpha ~ \delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$ 28
3.2.2 P $\alpha \delta$ юки́ $\mu \alpha \tau \alpha$ 29
3.2.3 Aбúp $\mu \alpha \tau \alpha$ סíктv α סغ δ о $\mu \varepsilon ́ v \omega v$ 31
 31
3.2.3.2 Aлó $\sigma \eta \mu \varepsilon$ ío $\sigma \varepsilon$ $\sigma \eta \mu \varepsilon$ ío 31$\sum \varepsilon \lambda i \delta \alpha \mid 1 \alpha \pi o ́ 8 o$

TEI Пعıр $\alpha ı \alpha ́$ T $\mu \eta \dot{\mu} \mu \alpha$ Avго $\alpha \alpha \tau \sigma \mu о и ́$ Птихเакŋ́ Ерүабік:

3.2.3.3 Е $\zeta \dot{\alpha} \pi \lambda \omega \sigma \eta$ ф $\alpha \sigma \mu \alpha \tau о \varsigma ~$ 31
3.2.3.4 E $\xi \dot{\alpha} \pi \lambda \omega \sigma \eta$ ф $\alpha \sigma \mu \alpha \tau о \varsigma ~ \mu \varepsilon ~ \sigma u v \varepsilon \chi ŋ ́ ~ \alpha \lambda \lambda \alpha ү \eta ́ ~ \sigma u \chi v o ́ \tau \eta \tau \alpha \varsigma, ~$ 34
3.2.3.5 E $\xi \dot{\alpha} \pi \lambda \omega \sigma \eta$ ф́́ $\sigma \mu \alpha \tau о \varsigma \mu \varepsilon \dot{\alpha} \mu \varepsilon \sigma \eta$ $\alpha к о \lambda о \cup \theta i ́ \alpha$ 35
 36
 37
3.3 ПАЕОNEKTHMATA THZ AटYPMATH Σ TEXNOAOTIA 38
3.4 A 4 YPMATE Σ YПHPE Σ IE $\Sigma ~ \triangle E \triangle O M E N ~ \Omega N ~$ 39
3.4.1 WiFi 40
 41
 42
4 TO AЕYPMATO MHTPOПOЛITIKO $\triangle I K T Y O ~ A \Theta H N \Omega N$. 43
4.1 H IETOPIA TOY AWMN 43
4.2 TO WIND (Wireless Nodes Database) 44
4.2.1 Tı घivaı to WIND 44
4.2.2 H totopia rou wind 45
4.2.3 T $\alpha \chi \alpha \rho \alpha \kappa \tau \eta \rho \iota \sigma \tau \kappa \alpha$ tou wind 45
4.2.4 WiND Development Team 52
4.3 OI YПHPE Σ IE Σ TOY AWMN 52
 52
4.3.2 DNS Servers 53
4.3.3 FTP Servers 54
4.3.4 VoIP Servers 56
4.3.5 Audio \& Video Streaming 57

5.1 Interfaces 59
 61
$5 \cdot 3$ Routes 62
5.4 Packet Processing $\Sigma \phi \dot{\alpha} \lambda \mu \alpha!\Delta \varepsilon v$ モ́ $\chi \varepsilon เ ~ о \rho เ \sigma \tau \varepsilon i ́ ~ \sigma \varepsilon \lambda ı \delta o \delta \varepsilon i ́ k \tau \eta \zeta . ~$
5.4.1 NAT. 63
5.4.2 Firewall 64
5.4.3 Hotspot 67
5.4.4 Hotspot Profiles 67

TEI Пєıраı́
Т $\mu \eta \dot{\mu} \alpha$ Avтонктібнои́
Птихıкки㇒ Ерүабік:

5.4.5 Dhcp Server 69
5.4.6 IP Pools 69
 69
5.5 NetWatch 70
5.5.1 Scripting 74
5.5.1.1 K \quad ӨПццрıvó BackUp каı $\alpha \pi о \sigma т о \lambda \eta ́ ~ \mu \varepsilon ~ m a i l ~$ 74
5.5.1.2 UPS Script 75
5.5.1.3 Auto Update \& Upgrade Script 77
6 ВВ $\beta \lambda_{1}$ үрр $\alpha і \alpha$. 79

TEI Пعıрдı்́
 Птихıкки́ Epүкбік:

1 EIIARSГH

1.1 H APXIKH IDEA

 хрпблиопоои́ия то ঠıабіктто.
 aoúp

Baбıко́s otóxos tou ódou

 аб甲á $\lambda \varepsilon$ та то aбúpuatou ठıктúou каı кат' घпغ்ктабп η
 TEI. Гia tov 入óyo autó
 Captive Portal $\sigma \varepsilon$ $\sigma u v \delta u a \sigma \mu o ́$ $\mu \varepsilon$ Radius Server, $\mu \varepsilon ̇ \sigma a$ anó тпv опоіа $\forall a \quad \mu п о р \varepsilon і ~ о ~$
 ठіктио $\mu \varepsilon$ тои пробюпико́ тои к $\omega \delta$ Іко่, «єпळ்vuнa». इто
 опоіоऽ ठıатпреі тоv server $\mu \varepsilon$ та registrations.

TEI Пєıраı́
Тнŋ́ $\mu \alpha$ Avтонктібнои́
Птихıкки́ Ерүабік:

1.2 EIEAГ Ω ГH $\Sigma T H N ~ \triangle I K T Y \Omega \Sigma H$

1.2.1 Мєtафора́ $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$

 μ поройv va та єр

TEI Пяıраи́
T $\mu \dot{\prime} \mu \alpha$ Auto $\mu \alpha \tau І \sigma \mu о и ́$
Птихıкки㇒ Ерүабі́х：

1．2．2 ${ }^{\text {＇}} \lambda \lambda \varepsilon \gamma \chi \circ \varsigma \sigma ф \alpha \lambda \mu \dot{\alpha} \tau \omega \nu$

Eィко́val 1－z

 غ̇va ákoo عivaı navo－ μ оо́типо $\mu \varepsilon$ єкєіvо пои
 A入入á otov праүцатіко́
 пávта ка́поьо عiठо̧， Өори́ßои，о опоіоя $\mu п о р \varepsilon i ~ v a ~ п а р \varepsilon \mu ß \lambda \eta \theta \varepsilon i ~$ ото архіко́ каӨаро́ б்่ца $\mu \mathrm{ac}$. ．$\Omega \varsigma \quad \theta$ ópußоя оріそетаı отьб́ппотє
 архıкó бп்ца，\quad а $\mu п о р о и ̆ \sigma \varepsilon ~ v a ~ п р о к \lambda \eta ө \varepsilon і ~$

TEI Пعıрфı่́

Птихıкки́ Ерү $\alpha \sigma$ о́ $:$

 aбuvaptךбієৎ.

 п入пророрієऽ хєıрачіаৎ (handshaking information), пои перıүра́чоvтаı бтךv

 $\sigma \varphi а \lambda \mu a ̀ t \omega v ~ \sigma \varepsilon \kappa a ́ \theta \varepsilon$ ако入оuӨia $\delta \varepsilon \delta о \mu \varepsilon ̇ v \omega v$.

1.2.3 H $\sigma \tau \rho \omega \mu \alpha \dot{\tau} \omega \sigma \eta$ OSI

\square

Eıкóva 1-3-H $\sigma \tau \rho \omega \mu \dot{\alpha} \tau \omega \sigma \eta$ OSI

TEI Пعıр $\alpha ⿺ \alpha ́ \alpha$

Птихıкки́ Ерү $\alpha \sigma i \alpha:$

1.2.3.1 Епілєбо 7: Ечор

1.2.3.3 Eпínєбо 5: $\Sigma u v o ́ \delta o u ~$

 дıабıкти̇ou.

1.2.3.4 Eпїпєбо 4: Мєт $\alpha \varphi о \rho \alpha \dot{\varsigma}$

$\Sigma \varepsilon \lambda i ́ \delta \alpha \mid 9 \alpha \pi$ ó 80

TEI Пعıраıи́

Птихıкки́ Ерүабік:

 єпіпєठ̆.

 пр ω то́ко $\lambda \lambda$ а $\mu \varepsilon т а 甲 о р а ́ я ~ \varepsilon i v a l ~ т а ~ U D P ~(a ү \gamma \lambda . ~ U s e r ~ D a t a g r a m ~ P r o t o c o l, ~$

 к $\lambda \pi$.

1.2.3.5 Eпíлєбо 3: Дıкти́ou

 Δ ıaסıктúou (ayץ入. Internet Protocol, IP).

 عрүобта́бıо.

- HDLC кaı ADCCP, үIa $\sigma u v \delta$ ह̇ $\sigma \varepsilon ı \varsigma ~ a n o ̇-\sigma \eta \mu \varepsilon i o-\sigma \varepsilon-\sigma \eta \mu \varepsilon i o ~(a \gamma \gamma \lambda . ~ h a l f-a-~$ half).
- 802.11, үıа aoùjцата топıкá ঠіктиa.

[^0]TEI Пघıраı́
Теп́ $\mu \alpha$ Autoнатібнои́
Птихıкю́ Ерүббі́

 опнвіо-бє-бпцвіо).

1.2.3.7 Eпі́лєбо 1: Фибルќ

 бuđквuก்ร.

 Ring, FDDI (ayץ人. Fiber Distributed Data Interface, $\Delta a a \sigma u ̈ v \delta \varepsilon \sigma \eta ~$

 пратоко́ $\lambda \lambda \omega$ v тои кá $\theta \varepsilon$ ठıктu่ou.
 отохвіа:
 характท่р $\omega \mathrm{v}$, ипо入оүוбєє́ ктл.

 ঠıаброий тои пакв่тои.

TEI Пรıраı่́
Т $\mu \dot{\mu} \mu \alpha$ Aитонктіб μ о́
Птихıкки㇒ Epүабі́а:

2 ENEYPMATA $\triangle I K T Y A$

2.1 IETOPIA EN $\Sigma Y P M A T \Omega N ~ \triangle I K T Y \Omega N$

$\mu \varepsilon ү а \lambda u ́ т \varepsilon \rho о ~ \mu \varepsilon р і \delta і о ~ \sigma т \eta v ~ " п і т а " ~ т \omega v ~ \delta ı к т u ́ \omega v . ~ А п о ́ ~ т о ~ п р \dot{т о ~} \mu \varepsilon ү а ́ \lambda о ~ \delta і к т и о, ~$

 үрท́үоро каı аб甲а入દ̇ц.

TEI Пعıраıи́
 Птихıккŋ́ Ерүабі́ α

Category 1 (1 MHz)
Category 2 (4 MHz)
Category 3 (16 MHz)
Category $4(20 \mathrm{MHz})$
Category 5 (100MHz)
Category 6 (250MHz)

Category 7 ($\dot{\omega} \omega \varsigma$ каı $600 \mathrm{MHz} \mu \varepsilon ̇ \sigma a$ aпó ка入ஸ்ঠıo 1000hm)
Оцоаदоvіко́ ка入ஸ́бıо
Hard Line
Tri axial
Twin axial
Bi axial
Semi rigid

TEI Пعıраı่́
 Птихıккј́ Ерүабік:

Ekóvo 2-3-K $\dot{\alpha} \lambda \dot{\omega} \delta 10$ SFTP

 DECNET, TYMNET, кגп.

T．Є．I．ПЄIPAIA

2.2 ПР $2 T O K O \wedge \wedge A ~ E N \Sigma Y P M A T \Omega N ~ \triangle I K T Y \Omega N$

Abstract

Me to xpóvo η aváүкп протün $\omega \mathrm{V}$（standards）غ́үıvє впітактікй．Мıа апо́ тіৎ пра́тєц протún $\omega \mathrm{V}$ үıa Tопıкá $\Delta i к$ тти 802 тои Ацєрікаvікоบ่ Ivotitou̇tou Hגєктро入óүळv кaı （IEEE）．O бкопо́s ŋ̇таv va про́типа：

－802．3：Аіктиа CSMA／CD（пара $\lambda \lambda a y \dot{1}$ тои Ethernet）

 бuүkpoúб $\varepsilon \omega v$（Carrier Sense Multiple Access with Collision Detection：

 $\varepsilon \lambda \varepsilon ү$ Хо́ $\mu \varepsilon$ VOऽ Xро́vo̧ $\mu \varepsilon т а \varphi о \rho a ́ \varsigma . ~$

－802．4：Aртпріа ミкитà入ŋヶ（Token Bus）

T．E．I．IEIPAIA
TEI Пعıраıи́
Т $\mu \eta \eta^{\prime} \alpha$ Avто $\mu \tau \tau \sigma \mu$ ои́
Птихıккŋ́ Ерү α бí ：

－802．5：Дакти்入ıऽऽ Σ китá入ņ（Token Ring）

－802．6：Мұтропо入ıтіка́ Діктиа（DQDB）．

－802．11：Aбúppata Toпıкá Дiктиa

2.3 ПРОТОКОЛ＾A EN Σ YPMAT Ω N $\triangle I K T Y \Omega N ~ \Sigma H M E P A ~$

 прюто்ко $\lambda \lambda 0$ عvoúp
 Digital Equipment Corporation kaı η Intel，anó koıvoù $\mu \varepsilon$ η Xerox，

T,€.I. п€IPAIA

 Птихıкки㇒ Epүабі́

 апобвкто́ впїпиа апо́ тоv орүаviбиó IEEE $\omega \varsigma$ то про́типо 802.3 үіа عvđúppata топика́ ठіктua (LAN).

 घival or парака்тш:

 avaßáӨuıon $\sigma \varepsilon$ Gigabit Ethernet (1000BASE-TX). To avtioтоıх про́типо үוa

 negotiation).

 100BASE-TX ($\lambda \varepsilon$ וтоupyia auto-negotiation). То аvтібтохо про́типо үІа тІя оптוкغ̧́ ivȩ घival ta 1000BASE-FX.

10Gigabit Ethernet (10Gbps). Oı пообıаүра甲غ่я поu оріदغı то Ethernet

 CSMA/CD (Carrier Sense Multiple Access with Collision Detection), oTו

 Transmission Unit, MTU) 1500 bytes kaı عגáxıotou 46 bytes. Гıa то бкопо́ autó, $\delta \varepsilon \delta о \mu \varepsilon ̇ v a ~ \mu \varepsilon ~ \mu \emptyset ́ к о \varsigma ~ \mu \varepsilon ү а \lambda u ́ т \varepsilon \rho о ~ T \omega v ~ 1500 ~ b y t e s ~ к а т а т غ ́ \mu v o v т a ı ~ \sigma \varepsilon ~$

2.4 TO ETHERNET TOY TEI MEIPAIA

[^1] т.€.I. nєIPAIA

TEI Пعıр $\alpha \dot{\alpha}$
Т $\mu \eta^{\prime} \mu \alpha$ Avго $\mu \alpha \tau \quad \sigma \mu \circ$ и́
Птихเаки́ Ерү σ бі $\alpha:$
To $\alpha \sigma$ ט́p $\mu \alpha$ то סíkтио тои T $\mu \eta \prime \mu \alpha$ тоৎ Avто $\mu \alpha$ тı μ ои́

2.5 TO ETHERNET TOY AEYPMATOY $\triangle I K T Y O Y$.

2.5.1 Mikrotik Router

Etкóvяе 2-6-O кеvтрıко̧́ Router tou סıктúov

CPU	Atheros AR7161 680MHz
Memory	128 MB DDR onboard memory
Data storage	64 MB onboard NAND memory chip
Ethernet	$9 \times 10 / 100 \mathrm{Mbit} / \mathrm{s}$ Fast Ethernet ports with Auto-MDI/X
miniPCI	Three miniPCI slots
Extras	Reset switch, Beeper
Serial port	One DB9 RS232C asynchronous serial port
LEDs	Power, NAND activity, 5 user LEDs
Power optionsPower over Ethernet: 10..28V DC (except power over datalines)Power jack: $10 . .28 \mathrm{~V}$ DC Dimensions Weight Power189 grams $\times 160 \mathrm{~mm}$$\quad$3W without extension cards, maximum -16 W	

T.E.I. ПEIPAIA

TEI Пعıрдı̛́
T $\mu \dot{\mu} \mu \alpha$ А Ато $\mu \alpha \tau \iota \sigma \mu$ ои́
Птихıळки́ Epү \quad бía:

consumption	
Operating	MikroTik RouterOS v4, Level5 license
System	

 Ethernet Ports, $\varepsilon к$ T $\omega \mathrm{V}$ опоі $\omega \mathrm{v} \eta \mu \mathrm{ia}, \mu \varepsilon$ бuvaто́тпта Power Over

 Ports, ón $\omega \varsigma$ фaivovtaı парака̇тш.

```
name="2_Tei LAN" type="ether" mtu=1500 \(12 \mathrm{mtu}=1522\)
address=
```



```
TOU TEI.
```

```
name="3_AP_LAN" type="ether" mtu=1500 I2mtu=1522
address=
```

 $\mathrm{t} \omega \mathrm{v}$ Access Points.

```
name="4_SERVER" type="ether" mtu=1500 \(12 \mathrm{mtu}=1522\)
address=
```



```
tou server nou גغітоирүві.
```

```
name="5_NS5-AWMN" type="ether" mtu=1500 \(\mathrm{I} 2 \mathrm{mtu}=1522\)
address=
```

 tou AWMN (Athens Wireless Metropolitan Network) ото опоіо uпа́pхє। про́бßaøŋ.

2．5．2 PoE Switches

Eikóva 2－7－T α Power Over Ethernet switches rou δ tкrúou

2．5．3 Access Points

Etкóve 2－8－Access Point TP－Link TL－WR543G

 Access Points，үіа та опоіа

Δ и́о топоӨєти்Өŋкаv ото ıбо́үвı． To ह̇va топоӨєтウ்Өпкє отоv
 $\mu \varepsilon ү a ̀ \lambda \varepsilon \varsigma ~ a i Ө o u \sigma \varepsilon \varsigma, ~ \mu \varepsilon ~ \sigma к о п о ் ~ т \eta v ~$ ка́ $\lambda u \nVdash \eta$ тоис．То ठєu่тعро Access Point тои וбоүвіои топо $Ө \varepsilon т ท ่ Ө \eta к є ~$ отоv χ ळंро тои кидıквіои．
＇Eva Access Point топо日єтウ่Өпкє отоv прш்то о́рочо каı періпои ото бпнвіо пои ßрібко́наотє цо́̀ıя，
 autó غ̇хદા бкопо́ va ка入úшєı tov

TEI Пعıр $\alpha ⿺ \alpha ́ \alpha$

Птихıаки́ Ерүобіа：

Enkóvor 2－9－Nanostation $5 \mathrm{M}_{5}$

Tо غंкто Access Point，عivaı

 проаи́ $\lambda 10$ хळ́ $\rho о$ ，$\dot{\varepsilon} \xi \omega$ апо่ то ктірı
 тои $\mu \varepsilon$ уá入ou ки入ıквіои．$\Sigma \varepsilon \mu \varepsilon т \rho \eta \dot{\sigma \varepsilon ı \varsigma ~}$
 бuүкєкрıцغ̇vo Access Point，ка入ùптє।
 отоv ठعи́тєро о́рочо，ото avaүv ω otñpı．
 $\sigma u ̈ v \delta \varepsilon \sigma \eta \mu \varepsilon$ то AWMN（Athens Wireless Metropolitan Network）．

2．5．4 £úүкрıஎŋ LAN－WALN

$\Sigma \varepsilon \sigma \chi \varepsilon ̇ \sigma \eta \mu \varepsilon$ та ε voúp $\mu a t a$ топıкá סikтua（Local Area Networks－LANs）тa

－Euколía каı тахútұта вүката́ттабпऽ：$\quad \Sigma \varepsilon$ avtiӨєøך $\mu \varepsilon \quad$ та घvoúpuata ঠіктua ठєv aпaıтои́vтaı $\mu \varepsilon ү a \dot{a} \lambda \varepsilon \varsigma$ парєцßäбєıs отŋv перıохウ் 入єוтоuрүіая， о́n ω s عivaı η вүката́бтабп ка入 $\omega \delta ı \dot{\omega} \sigma \varepsilon \omega \mathrm{v}$ ．

Cable Network
－EuEdıदia kaı єпєктабшо́тпта：Та aбúpиата ঠіктиа μ порoúv va єпєктаӨoủv عu่ко入a， E甲óaov то $\mu \varepsilon ́ \sigma o$ μ ета́ठобŋऽ пои

 ко́бтоऽ．

 ađúp $\mu a t \eta ~ \mu \varepsilon т a ́ \delta o o \eta . ~ A v ~ k a ı ~ \varepsilon ̇ x \varepsilon ı ~ п а р а т \eta р \eta Ө \varepsilon i ~ a p к \varepsilon т a ́ ~ \mu \varepsilon ү a ̀ \lambda \eta ~$

 Xрウ்oŋऽ $\varepsilon \lambda \varepsilon u ́ \theta \varepsilon \rho \omega v$ раб

 $\lambda a \theta \omega ̉ v$.

 бибті்цатос.

 бхદסiaøウ่ тои.

T.E.I. ПEIPAIA

TEI Пعıраı α
Т $\mu \eta \prime \mu \alpha$ Avто $\mu \alpha \tau \iota \sigma \mu$ и́
Птихıкки́ Ерүобо́ α :

3 A乏YPMATA $\triangle I K T Y A$

3.1 I ITOPIA A乏YPMAT ΩN DIKTY Ω

Ta aбúpната топıкá סíктua (Wireless Local Networks - WLANs) घivaı μ ia

 Ruschlikon Laboratories oт

 раঠıокицàt ω v ота 900 MHz (Ferrert, HP Palo Alto Research Laboratories,

 גєıтоupyoúv oтıৎ ISM (Industrial, Scientific, Medical) μ па́vтєৎ. Тદ̇тоıа ठіктиa

$$
\sum \varepsilon \lambda i \delta \alpha \mid 27 \alpha \pi o ́ 80
$$

T．E．I．пEIPAIA
TEI Пعıp＜ı⿺廴́
T $\mu \eta{ }^{\prime} \mu \alpha$ Avто $\mu \alpha \tau ı \sigma \mu о и ́$

घival to FreePort kaı to WaveLAN．To FreePort napéxel غ̇va aoúphato

3．2 APXH $\Lambda E I T O Y P I I A \Sigma ~ T \Omega N ~ A \Sigma Y P M A T \Omega N ~ \triangle I K T Y \Omega N ~$

3．2．1 H $\mu \varepsilon \tau \alpha ф о \rho \alpha \dot{\alpha} \delta \varepsilon \delta \circ \mu \varepsilon ́ v \omega v$

Н $\mu \varepsilon т а \varphi о р а ́ ~ б \varepsilon \delta о \mu \varepsilon ́ v \omega v ~$ $\mu \varepsilon ் \sigma \omega ~ а б \dot{́ p \mu a t o u ~ \delta і к т u ̛ o u ~}$ перı入ацßàvєı тріа $\xi \varepsilon x \omega р ı т$ а́
 $\mu о р \varphi \bar{~} T \omega v \quad \delta \varepsilon \delta \circ \mu \dot{\varepsilon} v \omega v$ ，каı
 aпó autá та тоıxघia घivaı

 каı та тріа о̀таv єпıовітє घ̇va каІvoúpyıo ठiктuo．ミто

Eィкóva 3－1－Aтєıкóviबŋ rou＂Bottleneck＂ μ нит $\grave{\lambda} \lambda 0$ avapopá̧ OSI，то

 adapters）kal touc oraӨिoús ßaंons（base stations）поu orèvvouv kaı

 бєठоцغ்va．

T.E.I. nEIPAIA

3.2.2 Р $\alpha \delta$ เоки́ $\mu \alpha \tau \alpha$

 ঠıакопєі то архıко́ рейца.

 ava ठєuтєро́лєпто, $\dot{\eta}$ хє $\rho \tau \zeta$ (hertz, Hz), anó то óvoua tou Heinrich Hertz, тоu

 megahertz $\mathfrak{\eta} \mathrm{MHz}$, kaı gigahertz $\mathfrak{\eta} \mathrm{GHz}$, avтiotoıxa).

T.E.I. ПEIPAIA

TEI Пعıр $\boldsymbol{\alpha}$
Т $\mu \dot{\prime} \mu \alpha$ Avтонатьбнои́
Птихıкки் Ерүабік:

 (International Telecommunication Union - ITU), غ́Xouv ठ $\varepsilon \sigma \mu \varepsilon u ́ \sigma \varepsilon ı ~ о \rho ı \sigma \mu \varepsilon ̇ v \varepsilon \varsigma, ~$

 kaı oтa. ठúo.

 каı à $\lambda \lambda \omega \mathrm{V}$ TEXVIK ω v.

TEI ПЕєраı́

Птихıкк门́ Ерүабі́:

3.2.3 Aवúp $\mu \alpha \tau \alpha$ סíктטג $\delta \varepsilon \delta о \mu \varepsilon ́ v \omega v$

 (point-to-point spread spectrum radio services). ANAa ouotínara Wi-Fi
 бта 5 GHz .

3.2.3.2 Aпó $\sigma \eta \mu \varepsilon i o ~ \sigma \varepsilon ~ \sigma \eta \mu \varepsilon i o ~$

3.2.3.3 $E \oint \dot{\alpha} \pi \lambda \omega \sigma \eta \varphi \alpha \dot{\alpha} \sigma \alpha \tau o \varsigma$

Túnoऽ Wi-Fi	इuxvótnta	siaцо́рф ω on
802.11 a	5 GHz	OFDM
802.11 b	$2,4 \mathrm{GHz}$	DSSS
802.11 g	$2,4 \mathrm{GHz}$	OFDM

TEI Пعıраı́́
 Птихıккй Ерүабі́а:

TEI Пعाраıи́

H Hedy Lamarr kal o George Antheil $\dot{\text { É }} \mathrm{a} \beta$ av autó to $\delta i n \lambda \omega \mu \mathrm{a}$

 tou ouZ̧̉you ThS, tou H. K. Markey. (solid-state electronics) Eixav

 оІ абúp к $\dot{\omega} v$ Enıkoıv $\omega v i \omega \dot{\omega}$ Milstar (Milstar Satellite Communications Systems) ThS

 $\mu \varepsilon т а ́ \delta o \sigma n \varsigma . ~$

 FHSS घivaı бxєтıк் apyėc.

 $\mu \mathrm{ma}$ ako入ouӨia Barker (Barker sequence) 11 т $\varepsilon \mu a x i \omega v$ (chips) yia va $\varepsilon \xi a n \lambda \dot{\omega} \sigma \varepsilon 1$

 риӨんои́ $\mu \varepsilon т a ́ \delta o o n \zeta ~(d y n a m i c ~ r a t e ~ s h i f t i n g) ~ y i a ~ v a ~ \mu \varepsilon ı \omega ் \sigma o u v ~ T \eta \vee ~ т а х u ́ t \eta т a ~ \sigma \varepsilon ~$

 $\sigma \varepsilon 1 \mathrm{Mbps}$.

 (orthogonal frequency division multiplexing modulation - OFDM), nou

T.E.I. neIPAIA

 ouxvótntaç (orthogonal frequency division). To прóтuno 802.1 la opiद̌ı ह̇va

 бuxvotìt $\operatorname{\omega v}$ 2,4 GHz.

т．є．I．пеIPAIA

3.3 П＾EONEKTHMATA TH乏 A乏YPMATH Σ TEXNO＾OIIA乏

 घпहктвivouv та ठіктиa tous
 घvoùphatav $\sigma u v \delta \dot{\varepsilon} \dot{\sigma} \sigma \omega$ тоис．Гіа то бкопо μ ас，та ацріброиа рабгокйдата апотвлойv tпv поо лоүкк่
 абйрратп हириद̆viк่ texvohovia，àdá عivaı عnionc סuvatéc каı à $\lambda \lambda \varepsilon \varsigma$
 p $\omega \varsigma$ rí ta оратá б $\dot{\mu} \mu \mathrm{ata}$ ）．H
 μ ас丂 $\mu \varepsilon$ то $\Delta а д$ ікттио（ $\dot{\eta} \mu \varepsilon$ ка́nоıо топико́ ঠіктио）$\mu \varepsilon ் \sigma \omega ~$ рабіккида́тшv пробчغ்ряı аркєта่ плعоvєктท่цата оє бưykpıon $\mu \varepsilon \operatorname{T\eta v}$ घvoúpuatn бúvठॄळп Tou．

 va avoí̧ouv трúnȩ бтоuc toixouc.

 عivaı пıo каӨарŋ் каı घúko入n 入úoŋ.

3.4 AEYPMATEE YחHPEEIE \triangle EAOMENON

TEI Пعıрцı́

Птихıккј́ Eрүабік:

3.4.1 WiFi

(WiFi)

CERTIFIED

T．є．I．IEIPAIA
TEI Пеıраıর́
Т $\mu \eta \dot{\mu} \mu$ Avго $\mu \alpha$ тıб μ ои́
Птихıкю́ Ерүабї：

 802.11 b ，каı 802.11 g ．Eivaı та vтє фа́кто про́типа пои Хрクбıцопоıо́vтаı $\varnothing \varepsilon$

 є६оп入ıбцо́ каı пробєктік่ єүката́бтабף．

Ta ঠikтua Wi－Fi пои перıүрáqovtaı，aко入ouӨoúv та про́типа 802.1 la，b，

t．€．I．пEIPAIA
TEI Пعıраı́́

Птихıкки́ Ерүабі́к：

3．4．2 Aбúp $\mu \alpha \tau \varepsilon \varsigma \cup \pi \eta \rho \varepsilon \sigma i \varepsilon \varsigma ~ к \cup \psi \varepsilon \lambda \omega \tau \eta \dot{\varsigma} \kappa ı \nu \eta \tau \eta \dot{\varsigma} \tau \eta \lambda \varepsilon \varphi \omega v i \alpha \varsigma$

 періүра́роттаи $\omega \varsigma$ иппребієя 3G（third generation－трiths
 трitm yeviá texvodoyiac tns
 хрпоाюпояєітв кіvŋто்
 anó ह̇va ŋ̀ סùo xpóvia，θa Өица்өте ібшऽ о்т та прӹта

 a入גà，$\mu \varepsilon$ k $\dot{a} \theta \varepsilon$ kaivoúpyia
 тク入є甲шviac про́офєраv

 пєрıббо่тєрєऽ каı ка入и்тєрєऽ，

T $\mu \not \eta_{\mu} \alpha$ Avго $\mu \alpha \tau І \sigma$ ои́
Птихıккј Ерүабі́к：

 ঠıарорвтікой лоүарıаблой про́бßаопя．

4 TO A乏YPMATO MHTPOПONITIKO $\triangle I K T Y O ~ A \Theta H N \Omega N ~$

4．1 H IETOPIA TOY AWMN

Апо то 2000 каı घंпघıта，о
 $\mu \varepsilon т а \xi 宀 ் ~ т \omega V ~ u п о л о ү І о т ळ ் v ~$ àpxıəav va үivovtaı впıтактıкغ́c． ＇О入о каı періббо́тєроІ оікıакоі хคウ่бтєऽ عixav TŋV aváyкn va нпоройv va avta入入áбouv үpríyopa ：apxधia kaı va
 тоия $\mu \varepsilon$ бхєтікп் вико入ia．Ка́ті тغ่тоוо ท̇тav anaүoрعutiкó үıa єкєivך тП้ єпохウ்，каı ьঠıаітєра

TEI Пعıраıُ́
T $\mu \eta \mu_{\mu}$ Avtонатıб μ о́
Птихıкки㇒ Epүабі́к:

4.2 TO WIND (Wireless Nodes Database)

4.2.1 Tı हivat to WIND

 бто ঠіктио.

T，Є．I．ПЄIPAIA
TEI Пعıраıи́
Т $\mu \eta \dot{\mu} \mu$ Avто $\mu \alpha \tau \iota \sigma \mu о и ́$

4．2．2 H เซtopi α tou wind

 ठuvatóтптєৎ каІ та ıбıаітєра характпрıттıка́ тои．

4．2．3 T $\tau \chi \alpha \rho \alpha к \tau \eta \rho \iota \sigma \tau เ к \alpha$ tou wind

 $\mu \varepsilon$ та опиаитіко́тєра характпрıттка́ тои WiND．
 бта E入入ŋviкá каı бта Aүү入ıка́． T.€.I. חEIPAIA

TEI Пعıраı́́ Т $\mu \tilde{\mu} \mu \alpha$ Avтонктıб μ ои́

Птихıкки㇒ Ерүабік:

 пои хрпбІиопоєєі.

ミтатıотıка: ミто арıттво́ плаїбо тпऽ

T.E.I. neIPAIA

TEI Пєıрдı́́ Т $\mu \not \eta_{\mu} \alpha$ Avтонктıбнои́ Птихıкки㇒ Ерүабік:

 T.6.I. neIPAIA

TEI Пعıраı่́

Птихıкк门́ Ерүабі́х:

 прооптוкй, т ω у ко่ $\mu \beta \omega \mathrm{v}$ тои WiND Eußoiac, $\mu \varepsilon \dot{\varepsilon} \omega \omega$ тои Google Earth.
 T.E.I. ПEIPAIA

Eikóv α 4-4-Screenshot $\alpha \pi o ́$ тo wind.awmn.net

 парака́тш пара́бдıүна.

TEI Пعıраı́́

Птихıкки́ Ерүабі́к:

Oпtikǹ ena甲்̣
hellaswifl (\#2120) - $\mathbf{- 5 . 4 3 \mathrm { km } - - \text { eviawind-1 (\#7524) }}$

 фштоүрачіа.

TEI Пعıраıа́
Т $\mu \eta \jmath^{\mu} \alpha$ Avго $\mu \alpha \iota \sigma \mu о$ и́
Птихıкки́ Ерү $\alpha \sigma i \alpha:$

Eккóv< 4-6-Screenshots α пó то wind.awinn.net

4.2.4 WiND Development Team

- Nikolaos "Winner" Nikalexis <winner [@] cube.gr> - Main Developer
- Konstantinos "vinilios" Papadimitriou <vinilios [@] cube.gr> - Basic Templates \& Graphics
- Christos "nikpet" Petsas <nikpet [@] dtps.unipi.gr> - Alpha/Beta? testing
- Petros "Ernest0x" Moisiadis <ernest0x [@] dtps.unipi.gr> - BIND updater script
- Faidon "paravoid" Liambotis < faidon [@] cube.gr> - Spiritual leader
- John "cirrus" Kolovos <cirrus [@] awmn.net> - Developer

Special thanks

- Modulus SA for kindly hosting the project
http://wind.cube.gr/

4.3 OI YחHPEEIES TOY AWMN

 $\mu п о р \varepsilon i ~ п о \lambda u ́ ~ \varepsilon u ́ к о \lambda a ~ v a ~ " a v \varepsilon ß a ̉ \sigma \varepsilon ı " ~ \mu ı a ~ u п \eta \rho \varepsilon \sigma i a ~ о т о ~ \delta i к т и o ~ к a ı ~ v a ~ т \eta v ~$

 парака̇тш:

T．G．I．ПЕIPAIA

TEI Пعוрбıর́

 Aoqa入oúç Ynoठoxņ்（Secure Sockets Layer（HTTPS）），каI то Пршто́ко入入о

 η oúvӨモø ovouáไgral LAMP（Linux，Apache，MySQL and Perl／Python／PHP）kai

4．3．2 DNS Servers

 a入入á tautóxpova θa прह́nहı va μ порвi va káveı resolve кaı tous dns tou
 yıa ò̀a．

$\Sigma \varepsilon \lambda i \delta \alpha \mid 53 \alpha \pi \dot{\delta} 80$

TEI MEIPAIA
T.E.I. IEIPAIA

TEI Пєцахı́
Т $\mu \eta \dot{\mu} \mu$ Аитон α тı μ ои́
Птихıкки㇒ Ерүабі́

Eкко́v๙ 4-7-Г

4.3.3 FTP Servers

To File Transfer Protocol (FTP), ($\varepsilon \lambda \lambda \eta$ viкá: Пршто́ко $\lambda_{\lambda о}$ Мвтарорáя
 uпоотпріそouv то прато́ко入ло TCP/IP (סіктиa ón $\omega \varsigma$ internet η in intranet). Eivaı

т.є.I. пеIPAIA

TEI Пеıраı Т $\mu \not{ }^{\prime} \mu \alpha$ Avто $\alpha \alpha \tau \sigma \mu$ ои́

Птихıаки́ Ерү $\alpha \sigma i ́ \alpha:$

 גвітоирүіко̇ би̇бтпиа.

Active mode

Active mode

Ekóva 4-8 - FTP Handshake(Active Mode)

Passive mode т.є.I. neipaia

TEI Пعıраı́́
Т $\mu \dot{\mu} \mu \alpha$ Auто $\mu \boldsymbol{\tau} і \sigma \mu о и ́$
Птихıккј́ Epyoció:

Passive mode

Eukóve 4-9-FTP Handshake(Passive Mode)

4.3.4 VoIP Servers

 тєлعutaia Xpóvia. 'Evaç anó autoús каІ $\mu \mathrm{a} \lambda$ ıота фavatikoús عivaı to awmn.
 тои H. 323 пратоко்入入ои каı غ́пहाта $\mu \varepsilon$ то SIP,
 по $\lambda \lambda$ оі ко́ μ ßоı $\varphi 1 \lambda о \xi \varepsilon v o u ́ v$ VoIP Servers kaı napéxouv

 цо́vo то Дıаঠіктио.
t．E．I．п€IPAIA
TEI Пعıрхıо́ Т $\mu \eta ́ \mu \alpha$ A $u \tau о \mu \alpha \tau ı \sigma \mu о и ́$

Птихıккŋ́ Ерү $\alpha \sigma i ́ \alpha:$

Tov teגعutaio kaipó غ̇Xouv єцpaviorii ol лєүо́ $\mu \varepsilon v o l$ вva入入актıкоі （ivtepveтiкoi） тплепıкоіv ω viaкоі рорвіч， о о опоіоі пробцв́роuv
 VoIP $\sigma \varepsilon$ бтаӨعрá ठіктua тๆлєпוкоіv $\omega \mathrm{vi} \dot{\mathrm{L}} \mathrm{v} \quad \sigma \varepsilon$ є६аוрєтіка \quad хаипло́ ко́бтоя，а入入á óxı то алтіотрофо．Мєрікоі є६

 бибкยบદ́ऽ USB VoIP，oו
 опоієя бuvepyáそovtaı $\mu \varepsilon$

4．3．5 Audio \＆Video Streaming

 то⿱ uпо入оүıбт t.E.I. пEIPAIA

TEI Пعıраıо́

Птихเаки́ Ерү $\boldsymbol{\sigma} \boldsymbol{\prime} \alpha$:

 $\varepsilon \theta$ viкíৎ $\varepsilon \mu \beta \varepsilon ́ \lambda \varepsilon เ \alpha \varsigma$
 рабо́ó $\omega \mathrm{va}$ клп.

5 ПАРАМЕТРОПОІНГH KENTPIKOY ROUTER

Eıкóv α 5-1-H $\alpha \rho \chi$ เкท́ $\sigma \varepsilon \lambda i \delta \alpha$ тou router $\mu \varepsilon ́ \sigma \omega$ ssh

5.1 Interfaces

 кєvтpıкой router.

\$interface print detail

Flags: D - dynamic, X - disabled, R - running, S - slave
$0 \times$ name="ether1" type="ether" mtu=1500
1 R name="2_Tei LAN" type="ether" mtu=1500 $\mathrm{I} 2 \mathrm{mtu}=1522$
2 R name="3_AP_LAN" type="ether" mtu=1500 I2mtu=1522
3 R name="4_SERVER" type="ether" $m t u=1500 \mathrm{I} 2 \mathrm{mtu}=1522$
4 R name="5_NS5-AWMN" type="ether" mtu=1500 $\mathrm{I} 2 \mathrm{mtu}=1522$
5 name="6_Test" type="ether" mtu=1500 $\mathrm{I} 2 \mathrm{mtu}=1522$
6 X name="ether7" type="ether" mtu=1500
$7 \times$ name $=$ "ether8" type="ether" mtu=1500
$8 \times$ name="ether9" type="ether" mtu=1500

9 X name="wlan1" type="wlan" mtu=1500

\$interface Ethernet print detail

Flags: X - disabled, R - running, S - slave
$0 \times$ name="ether1" mtu=1500 mac-address= arp=enabled auto-negotiation=yes full-duplex=yes speed=100Mbps

1
address $=$
duplex=yes speed $=100 \mathrm{Mbps}$ master-port= =none
bandwidth $=$ unlimited/unlimited switch=switch1

3	
address $=$	name $=$ "4_SERVER" mtu $=1500 \quad 12 \mathrm{mtu}=1522$
arp=enabled mac-	
auto-negotiation=yes	
full-	

duplex $=$ yes speed $=100 \mathrm{Mbps}$ master-port=none
bandwidth=unlimited/unlimited switch=switch1

4 R name="5_NS5-AWMN" mtu=1500 $12 \mathrm{mtu}=1522$ macaddress= arp=enabled auto-negotiation=yes fullduplex $=$ yes speed $=100 \mathrm{Mbps}$ master-port=none bandwidth=unlimited/unlimited switch=switch1

5 name="6_Test" mtu=1500 $12 \mathrm{mtu}=1522$ macaddress = arp=enabled auto-negotiation=yes fullduplex $=$ yes speed $=100 \mathrm{Mbps}$ master-port=none bandwidth=unlimited/unlimited switch=switch1
$6 \times$ name="ether7" mtu=1500 mac-address= arp=enabled auto-negotiation=yes full-duplex $=y e s$ speed $=100 \mathrm{Mbps}$ masterport=none bandwidth=unlimited/unlimited switch=switch1

7 X name="ether8" mtu=1500 mac-address=
arp=enabled auto-negotiation=yes full-duplex=yes speed $=100 \mathrm{Mbps}$ masterport=none
bandwidth=unlimited/unlimited switch=switch1
$8 \times$ name $=$ "ether9" mtu=1500 mac-address=

\$ip address print detail

Flags: X - disabled, I - invalid, D - dynamic

2 i; Nanostation 5 address= network= \square broadcast= interface=5_NS5-AWMN actual-interface=5_NS5AWMN

5.3 ROUTES

\$ip route print detail

Flags: X - disabled, A - active, D - dynamic, C - connect, S - static, r - rip, b - bgp, o - ospf, m - mme, B - blackhole, U - unreachable, P - prohibit

2 ADC dst-address= \quad pref-src $=\square$ gateway=5_NS5-AWMN gateway-status=5_NS5-AWMN reachable distance $=0$ scope $=10$

3 ADC dst-address=172 pref-src $=\square$ gateway $=2$ _Tei LAN gateway-status $=2$ _Tei LAN reachable distance $=0$ scope $=10$

TEI Пеıраıд́

Птихıккй Ерүабік:

\$ip firewall mangle print

Flags: X - disabled, I - invalid, D - dynamic
0 ;i; autonet-group Gateway chain=prerouting action=mark-routing new-routing-mark=autonetgroup passthrough=no src-address=

1 i; autocom-group Gateway chain=prerouting action=mark-routing new-routing-mark=autocomgroup passthrough=no src-address=

2 i; autocom-group Gateway
chain=prerouting action=mark-routing new-routing-mark=vpn-group passthrough=no src-address=

5.4 PACKET PROCCESING

5.4.1 NAT

\$ip firewall nat print detail

Flags: X - disabled, I - invalid, D - dynamic
0 ;i, masquerade hotspot network for AWMN chain=srcnat action=masquerade src-address= dstaddress $=10.0 .0 .0 / 8$ out-interface $=5$ _NS5-AWMN

1 ;i; masquerade server network for AWMN chain=srcnat action=masquerade src-address= dstaddress $=10.0 .0 .0 / 8$ out-interface $=5$ _NS5-AWMN

2 i; masquerade VPN network for AWMN
$\sum \varepsilon \lambda i \delta \alpha \mid 63 \alpha \pi o ́ 8 o$

TEI NEIPAIA
chain=srcnat action=masquerade src-address $=\square$ dst address $=10 \cdot 0 \cdot 0.0 / 8$ out-interface=5_NS5-AWMN

3 i;, masquerade hotspot network chain=srcnat action=netmap to-addresses= srcaddress= \square out-interface $=2$ _Tei LAN

4 ii; masquerade server network chain=srcnat action=netmap to-addresses= srcaddress $=\square$ out-interface=2_Tei LAN

5 i; place hotspot rules here chain=unused-hs-chain action=passthrough

5.4.2 Firewall

\$filter print detail

Flags: X - disabled, I - invalid, D - dynamic

```
1X;;; place hotspot rules here
    chain=unused-hs-chain action=passthrough
```


 катаүра́чоинє autoús поu проопаӨоu̇v.

1 i;; Address SRC list for Atempters

chain=forward action=add-src-to-address-list src-

list=Atempts to TeiLan
address-list-timeout=0s
2 i;; Address DST list for Atempters
chain=forward action=add-dst-to-address-list srcaddress $=\square$ dst-address $=\square$ address-
list=Atempts to TeiLan
address-list-timeout=0s
3 ;i; Block TeiLan from AP
chain=forward action=accept src-address=
\square dst-address= src-address-list=Atempts to

TeiLan
ミта пропүой $\mu \varepsilon$ va rules катаура́чоинє, каı ото єпо́ $\mu \varepsilon$ vo кávou ε drop та пакغ่та.

4 i; Block TeiLan from AP
chain=forward action=drop src-address=
dst-address= src-address-list=Atempts to TeiLan

$$
\Sigma \varepsilon \lambda i \delta \alpha \mid 65 \alpha \pi o ́ 80
$$

 $\eta \mu \dot{\varepsilon} \rho \varepsilon \varsigma, \mu \dot{\varepsilon} \chi \rho ı$ va $\lambda \dot{\eta} \dot{\xi} \varepsilon$ to ban time.

5 ;i; Dynamic Ban for Bruteforce FTP Attack chain=input action=drop protocol=tcp src-address-list=ftp_blacklist dst-port=21

6 chain=output action=accept protocol=tcp content=530 Login incorrect dst-limit $=1 / 1 \mathrm{~m}, 2$,dst-address/1m

7 chain=output action=add-dst-to-address-list protocol=tcp addresslist=ftp_blacklist address-list-timeout=3d content=530 Login incorrect
 хрПбюнопоוоч́ $\mu \varepsilon$ үІа то configuration тои router.

8 i;, Drop winbox bruteforce

chain=input action=drop protocol=tcp src-address-list=wb_blacklist dst-port=

9 ii; Winbox bruteforce blacklisting chain=input action=add-src-to-address-list connection-state=new protocol=tcp src-address-list=wb_stage3 address-list=wb_blacklist address-list-timeout=1w3d dst-port=

10 ii; Winbox brute force the third state chain=input action=add-src-to-address-list connection-state=new protocol=tcp src-address-list=wb_stage2 address-list=wb_stage3 address-listtimeout $=1 \mathrm{~m}$ dst-port=

11 ;i; Winbox brute forcers the second state

TEI Пعıраı́́
Т $\mu \tilde{\mu} \mu \alpha$ Avто $\mu \alpha$ тіб μ ои́
Птихıккі́ Epyaбía:

chain=input action=add-src-to-address-list connection-state=new protocol=tcp src-address-list=wb_stage 1 address-list=wb_stage2 2 address-listtimeout=1m

```
dst-port=
```

12 i;i, Winbox bruteforcers the first state chain=input action=add-src-to-address-list connection-state=new protocol=tcp address-list=wb_stage 1 address-list-timeout $=1 \mathrm{~m}$ dst-port=

13 ;i; GENERAL WINBOX FROM BRUTEFORCE PROTECTION Winbox Bruteforce Safe List
chain=input action=add-src-to-address-list connection-state=new protocol=tcp address-list=safe address-list-timeout=0s dst-port=
 опоіа пробпаӨвi va β үєı ото internet.

14 i; Drop awmn to internet
chain=forward action=drop in-interface=5_NS5-AWMN outinterface $=2$ _Tei LAN

5.4.3 Hotspot

Парака̇тढ фаiveтaı то setup tou hotspot $\mu \varepsilon$ то hotspot tool tou mikrotik.
ip hotspot print detail
Flags: X - disabled, I - invalid, S - HTTPS
0 name="hotspot1" interface=3_AP_LAN address-pool=Pool for AP profile $=$ default idle-timeout $=5 \mathrm{~m}$ keepalive-timeout=none addresses-permac=2
proxy-status="running"

5.4.4 Hotspot Profiles

\$ip hotspot profile print detail

Flags: * - default
0 * name="default" hotspot-address $=\square$ dns-name $=$ "" html directory=hotspot rate-limit="" http-proxy= \quad smtp-server= \square login-by=http-pap
split-user-domain=no use-radius=yes radius-accounting=yes radius-interim-update=received nas-port-type=Ethernet radius-default-domain=""

$$
\sum \varepsilon \lambda i \delta \alpha \mid 67 \alpha \pi o ́ 80
$$

TEI Пعıраı α
Т $\mu \neq \mu \alpha$ Avто $\mu \alpha \tau \boldsymbol{\sigma} \mu$ ои́
Птихıккŋ́ Ерү $\alpha \sigma i ́ \alpha:$

radius-location-id="" radius-location-name=""' radius-macformat $=X X: X X: X X: X X: X X: X X$
 kávouve login a $\lambda \lambda$ á va μ naivouve $\varepsilon \lambda \varepsilon u \dot{\theta} \theta \varepsilon \rho a$ ($n \times$: Access Points), $\dot{\varepsilon} \chi o u \mu \varepsilon$

\$ip hotspot ip-binding print detail

Flags: X - disabled, P - bypassed, B - blocked
0 P ;i; Acess Point 1 (Isogeio Aithouses Anamesa) mac-address= address= server=hotspot1 type=bypassed

1 P ;i, Acess Point 2 (Isogeio Kylikeio) server=hotspot1 type=bypassed

3 P ;i; NanoStation 2 (Proavlio-Mpasketes)
mac-address= address= server=hotspot1 type=bypassed

5 P ;i; Acess Point 5 (2os Eksw apo erg diktya) mac-address=
 server=hotspot1 type=bypassed

TEI Пعıраıа́
T $\mu \eta \dot{\mu} \mu \alpha$ Avто $\mu \alpha \tau \sigma \mu о \cup ́$
Птихเ кко́ Ерүобі́ α :

5.4.5 Dhcp Server

\$dhcp-server print detail

Flags: X - disabled, I - invalid
0 name="AP dhcp" interface=3_AP_LAN lease-time=1d addresspool=Pool for AP bootp-support=static authoritative=after-2sec-delay

1 name="Server DHCP" interface=4_SERVER lease-time=3d addresspool=dhcp_local_server bootp-support=static authoritative=after-2sec-delay

5.4.6 IP Pools

\$pool print detail

0 name="Pool for AP" ranges=
1 name="dhcp_local_server" ranges=

5.4.7 Radius Server $\nu \iota \alpha \tau \eta v \tau \alpha u \tau о \pi о i \eta \sigma \eta \tau \omega \vee \chi \rho \eta \sigma \tau \omega \dot{ }$

\$radius print detail

Flags: X - disabled
0 service=hotspot called-id="" domain="" address=
 timeout=
accounting-backup=no realm=""

TEI Пeıpaid

Птихıкќ Ерүабі́а:

5.5 NETWATCH

 autoi paivovtaı парака̇тш.

\$netwatch print detail

Flags: X-disabled
 \log по́тє عivaı up каı по்т down.

```
    0X ;i;}\mathrm{ Gateway teipir
    host= timeout=1s interval=5s since=jan/01/2002
03:00:04 status=unknown up-script=:log warning "GATEWAY is UP"
    down-script=:log error "GATEWAY is DOWN"
```


 кєvтріко́ router Tou TEI.

$$
1 \times \text {;i; Google.gr }
$$

host=74.125.77.104 timeout=10s interval=10s since=jan/01/2002 03:00:04 status=unknown up-script=:log warning "Google.gr is UP" down-script=:log error "Google.gr is DOWN"

$2 \times$;i; Acess Point 1 (Isogeio Aithouses Anamesa)
host= timeout=1m interval=10s since=jan/01/2002 03:00:04 status=unknown up-script=:log warning "AP1 is UP" $\backslash \mathrm{r} \backslash \mathrm{n} \backslash \mathrm{r} \backslash \mathrm{n}$

TEI Пદıраı́

Птихıккй Ерүабі́

down-script=$=\mid r \backslash n: \log$ error "AP1 is DOWN" $\backslash r \backslash n \backslash r \backslash n /$ tool e-mail send tls=yes to=" \square " subject= "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai sto Isogeio anamesa stis dyo megales aithouses einai DOWN. Apo
tis ".\ ([/system clock get date]).\ " kai wra ".\ ([/system clock get time] $)$) $\backslash r \backslash n \backslash r \backslash n$
$3 X$ i; Yahoo.com
host=87.248.122.122 timeout=1s interval=10s since=jan/01/2002
03:00:04 status=unknown up-script=:global yahoo "up" down-script=:global yahoo "down"

4 i;; Hol.gr
host=195.97.21.22 timeout=300ms interval=1m since=aug $/ 11 / 2011$ 22:48:00 status=up up-script=:global hol "up" down-script=:global hol "down"

5 X i,; Google.com
host=209.85.135.104 timeout=300ms interval=1m since=jan/01/2002
03:00:04 status=up up-script=:global google "down"
down-script=:global google "down"

$6 X ; ;$ SERVER

host= timeout=1s interval=1s since=jan/01/2002 03:00:04 status=up up-script=:log warning "SERVER is UP"
down-script=:log error "SERVERr is DOWN"\r\n\r\n/tool e-mail send tls=yes to=" " subject= "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti o SERVER einai DOWN. Apo tis ".\ ([/system clock get date]).\" kai wra

$$
\text { ". } \backslash([/ \text { system clock get time }]))
$$

7 X ;i; Acess Point 2 (Isogeio Kylikeio)

host= timeout=1m interval=10s since=jan/01/2002
03:00:04 status=up up-script=: log warning "AP2 is UP"
down-script=:log error "AP2 is DOWN" $\backslash r \backslash n \backslash r \backslash n /$ tool e-mail send tls=yes to =" \square " subject = "A HOST IS DOWN" body = ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai sto Isogeio ston xwro tou kylikeiou einai DOWN. Apo tis ".
([/system clock get date]).\" kai wra ".\ ([/system clock get time]))

TEI Пعıр α ı́
Т $\mu \eta \dot{\prime} \mu$ Avто $\mu \alpha \tau ı \sigma$ ои́
Птихıакй Ерүабік:

8 X i; Acess Point 4 (2os Akalyptos Xoros)
 host=
 timeout $=1 \mathrm{~m}$ interval $=10 \mathrm{~s}$ since=jan/01/2002

 03:00:04 status=up up-script=:log warning "AP4 is UP"down-script=:log error "AP4 is DOWN" $\backslash r \backslash n \backslash r \backslash n /$ tool e-mail send $t l s=y e s$ to=" \square " subject= "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai ston deftero orofo, ston akalypto xwro einai DOWN. Apo tis ". $\$
([/system clock get date]).\" kai wra ".\ ([/system clock get time]))
$9 \times$ i; NanoStation 2
host= timeout=1m interval=10s since=jan/01/2002 03:00:04 status=up up-script=:log warning "NanoStation2 is UP"
down-script=:log error "NanoStation2 is DOWN"|r\n\r\n/tool e-mail send t ls=yes to $=" \square$ " subject = "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai sthn taratsa (NanoStation 2) einai DOWN. Apo tis ".
([/system clock get date]). $\$ " kai wra ". $\backslash([/$ system clock get time]))

$10 \times$;i; Acess Point 3 (1os Orofos)
 host= timeout=1m interval=10s since=jan/01/2002 03:00:04 status=up up-script=: \log warning "AP3 is UP"
 down-script=:log error "AP3 is DOWN" $\backslash r \backslash n \backslash r \backslash n /$ tool e-mail send $t l s=y e s$ to =" \square subject = "A HOST IS DOWN" body= ("Afto einai

 enaaftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai ston prwto orofo einai DOWN. Apo tis ".
([/system clock get
date]).\ " kai wra ". $\([/$ system clock get time $])$)

```
\(11 \times\);i; Acess Point 5 (2os Eksw apo erg diktya)
    host= timeout=1m interval=10s since=jan/01/2002
```

03:00:04 status=up up-script=:log warning "AP5 is UP"
down-script=:log error "AP5 is DOWN" $\backslash r \backslash n \backslash r \backslash n /$ tool e-mail send tls=yes to $="$
subject= "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai ston deftero orofo, eksw apo to ergasthrio twn diktywn einai

DOWN. Apo tis ".\ ([/system clock get date]).\" kai wra ".\ ([/system clock get time]))

12 i; NanoStation 5
T.E.I. ПEIPAIA

Птихıккŋ́ Ерүабі́а:

host= timeout=1m interval=10s since=aug/05/2011 01:50:20 status=up up-script=:log warning "NanoStation5 is UP"
down-script=:log error "NanoStation5 is DOWN"\} \backslash \backslash n \backslash r \backslash n / tool e-mail send $\mathrm{tls}=$ yes to=" \square " subject= "A HOST IS DOWN" body= ("Afto einai ena
aftomatopoihmeno e-mail pou sas pliroforei oti to Access Point pou vrisketai sthn taratsa (NanoStation 5) einai DOWN. Apo tis ". $\backslash([/$ system clock get date]).\" kai wra ". $\([/$ system clock get time]))

```
    13 ;i; AWMN Gateway&Change DNS Script
    host= timeout=1s interval=1m since=aug/11/2011 16:39:03
status=up
    up-script=ip dns set servers=
warning "AWMN is up"
    down-script=ip dns set servers=\square\\\n:log
error "AWMN is down"
```


5.5.1 Scripting

5.5.1.1 K $К \vartheta \eta \mu \varepsilon \rho เ v o ́ ~ B a c k U p ~ к \alpha \iota ~ \alpha \pi о \sigma т о \lambda \eta \dot{\eta} \mu \varepsilon$ mail

Мє то парака̇та script, о router паiрvєı каӨпиعрıvá backup то

$\Sigma \varepsilon \lambda i \delta \alpha \mid 74 \alpha \pi \delta \dot{8 o}$
ミmov
T.Є.I. ПЄIPAIA

TEI Пعıраı́

 عиع λ ъía ото configuration.
name="Backup_Email_Script" owner="admin"
policy=ftp,read,write,policy,test,winbox,sensitive last-started=aug/13/2011 00:00:00 run-count=141
source $=$
/file remove [find type=backup]
:log info "backup beginning now"
:global backupfile ([/system identity get name] . "-" . [/system clock get time])
/system backup save name=\$backupfile
:log info "backup pausing for 10s"
:delay 1 s
:log info "backup being emailed"
/tool e-mail send tls=yes to $=" \square$ subject $=([/$ system identity get name] . I
" Backup") from=auto.freespot09@gmail.com file=\$backupfile body=("Afto einai ena aftomatopoihmeno e-mail pou stelnei to backup file kathe mera me mail>
:log info "backup finished"

5.5.1.2 UPS Script

 $\mu п о р о u ́ v ~ v a ~ \beta \lambda a ́ \psi o u v ~ t o v ~ r o u t e r . ~$
name="ups-powermonitor" owner="admin" policy=ftp,read,write,policy,test,winbox run-count=0 source=

\#
\#
\#
$\Sigma \varepsilon \lambda i \delta \alpha \mid 75 \alpha \pi \delta ́ 8 o$

```
        :global flagonbatt;
        :global flagbattlow;
            :local battalarm 15;
            :local battok 40;
            :local curonbatt;
            :local curcharge;
            :local sysname [/system identity get name];
            :local datetime "$[/system clock get date] $[/system clock get time]";
            # First run? If so, we need to initialize the global flags
            :if ([:typeof $flagonbatt]="nothing") do={:set flagonbatt 0}
            :if ([:typeof $flagbattlow]="nothing") do={:set flagbattlow 0}
            :set curonbatt false;
            :set curcharge 100;
            /system ups monitor [/system ups find name=$upsName] once do={
            :set curonbatt $"on-battery"; :set curcharge $"battery-charge";
}
    :if (($curonbatt) && ($flagonbatt=0)) do={
        :set flagonbatt 1;
    /tool e-mail send from=$mailfrom to=$mailto server=$mailserver
subject="$sysname: Power failure!" \
            body="$sysname is on battery since $datetime";
            :log info "Power-Fail: EMail sent to $mailto";
    }
    :if ((!$curonbatt) && ($flagonbatt=1)) do={
    :set flagonbatt 0;
    /tool e-mail send from=$mailfrom to=$mailto server=$mailserver
subject="$sysname: Power is back" \
        body="$sysname is back on power since $datetime";
            :log info "Power-Restore: Email sent to $mailto";
    }
    :if (($curcharge <= $battalarm) && ($flagbattlow=0)) do={
        :set flagbattlow 1;
        /tool e-mail send from=$mailfrom to=$mailto server=$mailserver
subject="$sysname: Low battery!" \
        body="$sysname battery is at $curcharge %! $datetime";
        :log info "Batt-Low: Email sent to $mailto";
```

TEI Пеєраı́

Птихıкки́ Epүабік:

\}

:if ((\$curcharge >= \$battok) \&\& (\$flagbattlow=1)) do=\{
:set flagbattlow 0;
/tool e-mail send from=\$mailfrom to=\$mailto server=\$mailserver subject="\$sysname: Battery recharged" \}
body="\$sysname Battery recharged to \$curcharge\% \$datetime";
:log info "Batt-Recharged: Email sent to \$mailto";
\}

5.5.1.3 Auto Update \& Upgrade Script

\# \#
\# download and upgrade
\# \#

```
# newest version
:local IMajor;
:local IMinor;
# current version
:local vMajor;
:local vMinor;
:local myVer [/system resource get version];
:for i from=0 to=([:len $myVer] - 1) do={
    :if ( [:pick $myVer $i] = ".") do={
            :set vMajor [:tonum [:pick $myVer 0 $i]];
            :set vMinor [:tonum [:pick $myVer ($i + 1) [:len $myVer]]] ;
    }
}
:if ($vMajor < 3) do={
    :log warning "RouterOS version too old ($vMajor.$vMinor), update
script not compatible";
```

$$
\text { \} else }=\{
$$

\# detect platform (architecture-name is not available in older 3.x versions)
:local platform [/system resource get architecture-name];

```
    # fetch latest version
        /tool fetch address="172.16.0.1" src-path="latestVer.txt"
user="admin" password="" mode=ftp;
            :local IVer [/file get latestVer.txt content];
            :for i from=0 to=([:len $IVer] - 1) do={
                :if ( [:pick $IVer $i] = ".") do={
                    :set IMajor [:tonum [:pick $IVer 0 $i]];
                        :set IMinor [:tonum [:pick $|Ver ($i + 1) [:Ien $IVer]]] ;
            }
    }
    :if (($vMajor = $|Major) && ($vMinor < $|Minor)) do={
            :local pckgName "routeros-$platform-$IMajor.$IMinor.npk";
            /tool fetch address=[:resolve "www.mikrotik.com"]
host="www.mikrotik.com" mode=http src-path="download/$pckgName";
            /system reboot;
        } else={
            :log info "Upgrade_script: already latest version";
        }
}
```

TEI Пعıраı́
T $\mu \eta \dot{\mu} \mu \alpha$ Avто $\mu \alpha$ тьб μ о́

6 Bı $\beta \lambda เ$ оүр $\alpha ф i \alpha$

 Kגદıס́ápı日иоц»．
－Larry L．Peterson \＆Bruce S．Davie，« Дiктua Yподоүıоы்̀，Mıa
 К入єıठápı $\theta \mu$ ц̧»
 К入єıठ̈ápıӨиоц»
－Nicopolitidis，Obaidat，Papadimitriou，Pomportsis，«Aбúpuata סikтua－

－Аıабıктиакй Еүкиклопаібвıа «http：／／www．wikipedia．org／»
－Дıaঠıктиако́я то́поऽ «http：／／www．w3schools．com／»

－వıаঠıктиако́ц то́поऽ «http：／／www．tp－link．com／en／support／»
－ －Іаঠıктиако́я то́поৎ «http：／／routerboard．com／»
－ －ıaסıктиако́s то́по̧ «http：／／www．cisco．com／en／US／docs／wireless／» $^{\text {－}}$
－వiaסıктиако́s то́поৎ «http：／／www．wind．awmn．net／»
－ыıабıктиако̧́ то́поৎ «http：／／www．awmn．net／»

TEI Пعıраıо́
T $\mu \eta \prime \mu \alpha$ Avто $\mu \alpha \tau ı \mu$ ои́

[^0]: $\sum \varepsilon \lambda i \delta \alpha \mid 10 \alpha \pi o ́ 8 o$

[^1]:

