"ΜΕΘΟΔΟΛΟΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΣΗΜΑΤΟΤΕΧΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ ΣΕ ΣΥΔΡΟΔΡΟΜΙΚΟ ΔΙΚΤΥΟ ΜΕΤΡΟ”

Επιβλέπων Καθηγητής: Καμινάρης Σταῦρος, Επίκουρος Καθηγητής
Σπουδαστής: Τιρτιράκης Βεντούρας, Γεώργιος

ΑΜ: 31216

Αθήνα

Ιούνιος 2014
Copyright © Ανώτατο Τεχνολογικό Εκπαιδευτικό Ίδρυμα Πειραιά

Με επιφύλαξη παντός δικαιώματος. All rights reserved.

Απαγορεύεται η αντιγραφή, αποθήκευση και διανομή της παρούσας εργασίας, εξ ολοκλήρου ή τμήματος αυτής, για εμπορικό σκοπό. Επιτρέπεται η ανατύπωση, αποθήκευση και διανομή της για σκοπό μη κερδοσκοπικό, εκπαιδευτικής ή ερευνητικής φύσης, υπό την προϋπόθεση να αναφέρεται η πηγή προέλευσης και να διατηρείται το παρόν μήνυμα. Ερωτήματα που αφορούν τη χρήση της εργασίας για κερδοσκοπικό σκοπό πρέπει να απευθύνονται προς τον συγγραφέα.

Οι απόψεις και τα συμπεράσματα που περιέχονται σε αυτό το έγγραφο εκφράζουν το συγγραφέα και δεν πρέπει να ερμηνευθεί ότι αντιπροσωπεύουν τις επίσημες θέσεις του Ανώτατου Τεχνολογικού Εκπαιδευτικού Ίδρυμα Πειραιά.
ΕΥΧΑΡΙΣΤΙΕΣ

Ο συγγραφέας της παρούσας πτυχιακής εργασίας θέλει να ευχαριστήσει τους μηχανικούς της εταιρίας ΑΚΤΩΡ Α.Τ.Ε. και ιδιαίτερα τους μηχανικούς του τμήματος της σηματοδότησης, για την πολύ καλή συνεργασία που είχαν όλο το προηγούμενο διάστημα και την μεγάλη τους βοήθεια στην υλοποίηση της πτυχιακής εργασίας.

Θερμές ευχαριστίες για τον όγκο του υλικού που δόθηκε στο συγγραφέα, για την πραγματοποίηση της πτυχιακής εργασίας.

Καθώς επίσης θερμές ευχαριστίες στον κύριο Σταύρο Καμινάρη για την συμβολή του στην πραγματοποίηση αυτής της εργασίας.

Αθήνα Ιούνιος 2014
Τιρτιράκης Βεντούρας Γεώργιος
ΕΥΧΑΡΙΣΤΙΕΣ.. iii
ΠΕΡΙΕΧΟΜΕΝΑ .. iv
ΛΙΣΤΑ ΕΙΚΟΝΩΝ .. vi
ΛΙΣΤΑ ΠΙΝΑΚΩΝ ... viii
SUMMARY... ix
ΠΡΟΛΟΓΟΣ ... 10
ΚΕΦΑΛΑΙΟ 1: ΣΙΔΗΡΟΔΡΟΜΙΚΑ ΣΥΣΤΗΜΑΤΑ – ΣΥΣΤΗΜΑ ΣΗΜΑΤΟΔΟΤΗΣΗΣ .. 11
1.1 Σύστημα Σηματοδότησης ... 11
1.2 Περιγραφή Εξοπλισμού (Υλικά – Εργαλεία – Μηχανήματα) ... 11
1.2.1 Υλικά - εργαλεία και μηχανήματα .. 11
1.2.2 Καλωδιόδοσες .. 12
1.2.3 Κυκλώματα Γραμμής Ακουστικών Συχνοτήτων (FTGS-917/) 13
1.2.4 Φωτοσήματα ... 13
1.2.5 Ηλεκτροκίνητα Χειριστήρια Αλλαγής Τροχαίας .. 14
ΚΕΦΑΛΑΙΟ 2: ΜΕΘΟΔΟΛΟΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΣΗΜΑΤΟΤΕΧΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ .. 18
2.1 Καλωδιόδοσες .. 18
2.1.1 Μεταφορά καλωδίων ... 18
2.1.2 Φύλαξη καλωδίων .. 18
2.1.3 Εκτύλιξη καλωδίου .. 19
2.1.4 Διαδικασία τοποθέτησης εντός καναλιού (καλωδιοδιάδρομος) 20
2.1.5 Προστασία των άκρων των καλωδίων .. 21
2.2 Μεθοδολογία Τερματισμού Καλωδίων στους Κατανεμητές .. 22
2.2.1 Τρόπος σύνδεσης ανά τύπο καλωδίου ... 22
2.2.1.1 Καλωδιοτοπική με κλώνους .. 24
2.2.1.2 Καλώδια με πλοκή τετραπλού αστέρα .. 24
2.3 Μεθοδολογία Εγκατάστασης Κυκλώματος Γραμμής .. 26
2.3.1.1 Εγκατάσταση Μεταλλικής Βάσης Στήριξης Ακροκιβωτίου 26
2.3.1.2 Τοποθέτηση Ακροκιβωτίου στη Μεταλλική Βάση Στήριξης 27
2.3.1.3 Σύνδεση Συνδέσμων στις Στηριγματοσχέδια ... 27
2.3.1.3.1 Απλοί σύνδεσμοι ... 27
2.3.1.3.2 Τετραπλοί σύνδεσμοι .. 27
2.3.1.3.3 Τροπικοί σύνδεσμοι ... 27
2.3.1.4 Σύνδεση Συνδέσμου στο Ακροκιβώτιο ... 35
2.3.1.5 Σύνδεση Καταλήκτικου Καλωδίου ... 35
2.3.1.6 Συνέδρωση Συνδέσμων σε Στηριγματοσχέδια και Στροφήρες 37
2.4 Μεθοδολογία Εγκατάστασης Φωτοσήματων ... 37
2.5 Μεθοδολογία Εγκατάστασης Χειριστηρίου Αλλαγής Τροχαίας 43
2.6 Δοκιμές Καλωδίων (συνέχειας, μόνωσης, αντίστασης βρόχου) 48
2.6.1 Σκοπός .. 48
2.6.2 Προετοιμασία ... 48
2.6.3 Διαδικασίες δοκιμών .. 48
2.6.3.1 Δοκιμή συνέχειας ... 48
2.6.3.2 Δοκιμή μόνωσης ... 49
2.6.3.2.1 Μέτρηση μόνωσης, κλώνου με κλώνο .. 49
2.6.3.2.2 Μέτρηση μόνωσης κλώνου με γιά .. 49
2.6.3.3 Μέτρηση αντίστασης βρόχου ... 49
ΚΕΦΑΛΑΙΟ 3: ΠΛΑΝΟ ΕΡΓΟΥ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΠΡΟΣΩΠΙΚΟΥ ΓΙΑ ΕΡΓΑΣΙΑ ΕΠΙ & ΠΛΗΣΙΟΝ της ΓΡΑΜΜΗΣ ... 50
3.1 Πλάνο Έργου (Φάσεις Υλοποίησης της Κατασκευής) .. 50
3.2 Εκπαίδευση για Ασφαλή Εργασία Επί & Πλησίον των Γραμμών 50
3.3 Ρεύμα Έλξης .. 51
3.4 Βασικοί κανόνες ασφαλείας και κίνηση πεζών εντός του συρμού 51
3.5 Διακόπτης Ρεύματος Έλξης .. 52
3.6 Προϋποθέσεις για ασφαλή εργασία επί ή πλησίον της τροχιάς 54
3.7 Προσανατολισμός στη σήραγγα ... 54
ΒΙΒΛΙΟΓΡΑΦΙΑ ... 56
ΣΥΜΠΕΡΑΣΜΑΤΑ .. 57
ΛΙΣΤΑ ΕΙΚΟΝΩΝ

Εικόνα 1: Δομή καλωδίων ... 12
Εικόνα 2: Θεμελιώδης αρχή λειτουργίας του FTGS ... 13
Εικόνα 3: Τρόπος Απελευθέρωσης των Φωτοσήματων στο Σχηματικό Διάγραμμα Γραμμής, αναλόγως την ενδείξη τους ... 13
Εικόνα 4: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής με Φωτοσήματα Αλλαγών Τροχιάς ... 14
Εικόνα 5: Αλλαγή τροχιάς με χειλιδονουρά .. 15
Εικόνα 6: Αλλαγή τροχιάς με Spherolock .. 15
Εικόνα 7: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής Χειριστηρίου Αλλαγών Τροχιάς ... 16
Εικόνα 8: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής Χειριστηρίου Αλλαγών Τροχιάς ... 17
Εικόνα 9: Μεταφορά καλωδίων .. 18
Εικόνα 10: Φύλαξη καλωδίων .. 19
Εικόνα 11: Εκτύλιξη καλωδίου ... 19
Εικόνα 12: Σωστή και λάθος εκτύλιξη του καλωδίου 19
Εικόνα 13: Τοποθέτηση καλωδίου εντός καναλιού (α' τρόπος) 20
Εικόνα 14: Τοποθέτηση καλωδίου εντός καναλιού (β' τρόπος) 20
Εικόνα 15: Τοποθέτηση καλωδίου εντός καναλιού ή καλωδιαδρόμου 21
Εικόνα 16: Προστασία άκρων καλωδίου .. 22
Εικόνα 17: Εσωτερικό ΚV. Σύνδεση καλωδίων στις κλεμοσειρές 23
Εικόνα 18: Αρίθμηση κλώνων .. 24
Εικόνα 19: Δομή κλώνων καλωδίου πλοκής τετραπλού αστέρα 25
Εικόνα 20: Ζεύγη κλώνων .. 25
Εικόνα 21: Αρίθμηση κλώνων καλωδίου τετραπλού αστέρα 26
Εικόνα 22: Απλός σύνδεσμος 1 ... 28
Εικόνα 23: Απλός σύνδεσμος 2 ... 29
Εικόνα 24: Απλός σύνδεσμος λεπτομέρειες .. 30
Εικόνα 25: Τετραπλός σύνδεσμος ... 31
Εικόνα 26: Τετραπλός σύνδεσμος λεπτομέρειες ... 32
Εικόνα 27: Τεματικός σύνδεσμος ... 33
Εικόνα 28: Τεματικός σύνδεσμος λεπτομέρειες ... 34
Εικόνα 29: Εσωτερικό Ακροκιβωτίου .. 35
Εικόνα 30: Ηλεκτρολογικό σχέδιο σύνδεσης καταληκτικών καλωδίων κυκλωμάτων γραμμής ... 36
Εικόνα 31: FTGS - Στήριξη καλωδίων στη γραμμή ... 37
Εικόνα 32: Ηλεκτρολογικό σχέδιο σύνδεσης καλωδίων φωτοσήματος 39
Εικόνα 33: Κιβώτιο Ελέγχου και Φωτόσημα .. 40
Εικόνα 34: Φωτόσημα στη γραμμή ... 41
Εικόνα 35: Κιβώτιο Ελέγχου και Φωτόσημα στο Τέρμα της Γραμμής 42
Εικόνα 36: Φωτόσημα. Σχίσα Καλωδίων και Αγωγός Γείωσης 43
Εικόνα 37: Βάση εδρασης ηλεκτροκίνητου χειριστηρίου αλλαγής τροχιάς 44
Εικόνα 38: Ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς σε αλλαγή τροχιάς με spherolock 44
Εικόνα 39: Ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς σε αλλαγή τροχιάς με χειλιδονουρά 45

vi
Εικόνα 40: Σχέδιο εγκατάστασης χειριστηρίου αλλαγής τροχιάς, τύπου S700 της Siemens ..46
Εικόνα 41: Ηλεκτρολογικό σχέδιο σύνδεσης καταληκτικού καλωδίου ηλεκτροκίνητου χειριστηρίου αλλαγής τροχιάς ..47
Εικόνα 42: Διακόπτης Ρεύματος Έλξης ..53
Εικόνα 43: Πληροφορική πινακίδα ΔΡΕ ..53
Εικόνα 44: Μέσα ατομικής προστασίας ..54
Εικόνα 45: Προσανατολισμός εντός της σήραγγας ..54
ΔΙΣΤΑ ΠΙΝΑΚΩΝ

Πίνακας 1: Συντομογραφίες τύπων ... 12
SUMMARY

The thesis described below, was in response to the practice of the author to the company AKTOR A.T.E.

The practice was held in the extension of Metro Line 2, in part by St. Demetrios Elliniko and up based on experience gained by the author, prepared the following thesis.

In the thesis, a brief attempt is taken to understand the function of signaling and track equipment used (Chapter 1), what materials and what tools are required to perform any work (Chapter 2), how to accomplish each operation (Chapter 3) and in what order (Chapter 4).

Simultaneously, a brief attempt is taken to present the way in which we ensure safe working in or near the metro lines on the ground that may arise in work hours, therefore transit trains full- Mains line with the risk of electric shock (CAPITAL 5).

The signaling is special piece of electrical installation, which occurs in the specialized work on subway lines and OSE and therefore talking about run track. There are some differences between them not touching this study.

Actions performed are largely standardized, come from instructions and regulations of the equipment manufacturer.
ΠΡΟΛΟΓΟΣ

Η πτυχιακή εργασία που περιγράφεται παρακάτω, έγινε με αφορμή την πρακτική άσκηση του συγγραφέα στην εταιρία ΑΚΤΩΡ Α.Τ.Ε..

Η πρακτική άσκηση πραγματοποιήθηκε στην επέκταση της γραμμής 2 του ΜΕΤΡΟ, στο τμήμα από Άγιο Δημήτριο μέχρι Ελληνικό και με βάση την εμπειρία που αποκόμισε ο συγγραφέας, εκπονήθηκε η παρακάτω πτυχιακή εργασία.

Στην πτυχιακή εργασία γίνεται μια συνοπτική προσπάθεια να κατανοηθεί η λειτουργία της σηματοδότησης και ο εξοπλισμός γραμμής που χρησιμοποιείται (ΚΕΦΑΛΑΙΟ 1), τι υλικά και ποια εργαλεία απαιτούνται για την πραγματοποίηση οποιασδήποτε εργασίας (ΚΕΦΑΛΑΙΟ 2), με ποιο τρόπο πραγματοποιείται κάθε εργασία (ΚΕΦΑΛΑΙΟ 3) και με ποια σειρά (ΚΕΦΑΛΑΙΟ 4).

Σταυρόχρονα γίνεται μια συνοπτική προσπάθεια να παρουσιασθεί ο τρόπος με τον οποίο εξασφαλίζεται η ασφαλής εργασία εντός ή πλησίον της γραμμής του ΜΕΤΡΟ, για τον λόγο ότι μπορεί να προκύψουν εργασίες σε όρες λειτουργίας, δηλαδή διέλευσης συρμών και πλήρους ρευματοδότησης της γραμμής, με κίνδυνο ηλεκτροπληξίας (ΚΕΦΑΛΑΙΟ 5).

Η σηματοδότηση είναι ιδιαίτερο κομμάτι της ηλεκτρολογικής εγκατάστασης, το οποίο συναντάται σε εξειδικευμένες εργασίες για τις γραμμές ΜΕΤΡΟ και ΟΣΕ δηλαδή σε μέσα σταθερής τροχιάς, που όμως μεταξύ τους παρουσιάζουν ορισμένες διαφορές που δεν αγγίζει η συγκεκριμένη μελέτη.

Οι ενέργειες που πραγματοποιούνται είναι σε μεγάλο βαθμό τυποποιημένες και προέρχονται από οδηγίες και κανονισμούς του κατασκευαστή του εξοπλισμού και των συστημάτων.
ΚΕΦΑΛΑΙΟ 1: ΣΙΔΗΡΟΔΡΟΜΙΚΑ ΣΥΣΤΗΜΑΤΑ – ΣΥΣΤΗΜΑ ΣΗΜΑΤΟΔΟΤΗΣΗΣ

1.1 Σύστημα Σηματοδότησης

Το Σύστημα Σηματοδότησης αποτελεί ουσιαστικά ένα σύστημα ασφαλούς ελέγχου της σιδηροδρομικής κυκλοφορίας, με κύριο σκοπό την αποτροπή σύγκρουσης των τραίνων.

Ο σηματοτεχνικός εξοπλισμός γραμμής που συναντάται στο σιδηροδρομικό δίκτυο του ΜΕΤΡΟ αναλύεται παρακάτω.

1.2 Περιγραφή Εξοπλισμού (Υλικά – Εργαλεία – Μηχανήματα)

1.2.1 Υλικά-εργαλεία και μηχανήματα

Για την εγκατάσταση των καλωδίων εντός του καλωδιαδρόμου χρησιμοποιούμε, σιδηροδρομικό όχημα τύπου Unimog, στην πλατφόρμα το οποίο υπάρχει βαρούλκο και καβαλέτο για το ξετύλιγμα των καλωδίων από τα στροφεία με βάση τις οδηγίες εγκατάστασης.

Για την σήμανση των καλωδίων στα σημεία όπου γίνεται ο τερματισμός τους, χρησιμοποιούμε ειδικό κόφτη καλωδίων (όπου είναι απαραίτητο). Στην περίπτωση που κόψουμε το καλώδιο πρέπει να στεγανοποιήσουμε το άκρο ή τα άκρα του, χρησιμοποιώντας ειδική τάπα, η οποία στεγανοποιείται με θερμό αέρα ή με φλάμιστρο αερίου προπανίου. Επάνω στο καλώδιο αναγράφουμε τα χαρακτηριστικά του, ωστόσο εμφανίζονται στο σχέδιο του μηχανικού, με κατάλληλο μαρκαδόρο.

Για την εγκατάσταση των καλωδίων στους κατανεμητές (KV), χρειαζόμαστε κόφτη καλωδίων, μια πλήρη εργαλειοθήκη με τον βασικό ηλεκτρολογικό εξοπλισμό (κατσαβίδια, πένσες, μυτοτσίμπιδο, απογυμνωτή καλωδίων, δεματικά, μονωτική ταινία), ελατηριακούς συνδέσμους τύπου Scotchcast για την τοποθέτηση γείωσης στην προστατευτική μεταλλική μόνωση και στον οπλισμό του καλωδίου, φλόγιστρο ή πιστόλι ψυχαγωγίας για την πρόσβαση και στην μόνωση της γείωσης με θερμοσυστελλόμενο υλικό. Κοσ και πρέσα, για τα πολύκλωνα καλώδια.

Για την εγκατάσταση των ηλεκτρικών αρμών (S-bond) και των ακροκβωτίων (trackside box) χρειαζόμαστε, ηλεκτρικό τρυπάνι, ούστα – βίδες για την στερέωση της βάσης του ακροκβωτίου, μια πλήρη εργαλειοθήκη με τον βασικό ηλεκτρολογικό εξοπλισμό, όπως και παραπάνω, για την εγκατάσταση του συνδέσμου, ειδικά στηρίγματα (γλίστρες, πιάστρες) για την στερέωση του πάνω στη σιδηροτροχιά.

Για την εγκατάσταση του ηλεκτροκίνητου χειριστηρίου αλλαγής τροχιάς (Point Machine), χρησιμοποιούμε ειδικό κλειδί καλωδίων το ηλεκτροκίνητο χειριστηρίου αλλαγής τροχιάς, χειροκιβωτίων, κατσαβίδια, κλειδί, γαλλικό κλειδί, κόφτη και απογυμνωτή καλωδίων.

Στην εγκατάσταση των φαναριών χρησιμοποιούμε τον βασικό ηλεκτρολογικό εξοπλισμό (κατσαβίδια, πένσες, μονωτική ταινία, δεματικά), ελατηριακούς συνδέσμους τύπου Scotchcast, θερμοσυστελλόμενο υλικό, φλόγιστρο ή πιστόλι θερμού αέρα.
Για τον έλεγχο της εγκατάστασης, τις δοκιμές γραμμής χρησιμοποιούμε πολύμετρο, τηλέφωνο – ακουστικό και όργανο τύπου Megger. Επίσης έχουμε μαζί μας απογεμνωτή καλωδίων, κατασκευή και πένα για να αφαιρέσουμε τη μόνωση των καλωδίων και να πραγματοποιήσουμε τους ελέγχους. Στο τέλος πρέπει να εξασφαλίσουμε τη μόνωση των άκρων του καλωδίου με τάπες εάν το καλώδιο παραμείνει στο «αέρα».

1.2.2 Καλωδιώσεις

Οι τύποι των κύριων και καταληκτικών καλωδίων που χρησιμοποιούνται είναι:

Καλωδιοπλοκή με κλώνους
AJ-2Y (St) YBY...x1x...S (IK) (2B 0,5, 2B 0, 8), διατομής κλώνων 1,4 mm

Καλώδια με πλοκή τετραπλού αστέρα
AJ-2Y (St) YBY...x4x...S (IK) (2B 0,5, 2B 0,8), διατομής κλώνων 1,4 mm

<table>
<thead>
<tr>
<th>Εσωτερικό καλώδιο με επαγωγική προστασία</th>
</tr>
</thead>
<tbody>
<tr>
<td>2Y</td>
</tr>
<tr>
<td>(St)</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>B</td>
</tr>
<tr>
<td>Y</td>
</tr>
<tr>
<td>80</td>
</tr>
<tr>
<td>x1x</td>
</tr>
<tr>
<td>x4x</td>
</tr>
<tr>
<td>1,4</td>
</tr>
<tr>
<td>S</td>
</tr>
<tr>
<td>Χαρακτηριστικός σιδηροδρομικών καλωδίων σηματοδότησης</td>
</tr>
<tr>
<td>(fK)</td>
</tr>
<tr>
<td>διαμήκης χάλκινη ταινία, συμπληρωματικά προς το (St)</td>
</tr>
<tr>
<td>(2B 0,5) 2 στρώματα μεταλλικής ταινίας, πάχος 0,5 mm</td>
</tr>
<tr>
<td>(2B 0,8) 2 στρώματα μεταλλικής ταινίας, πάχος 0,8 mm</td>
</tr>
</tbody>
</table>

Πίνακας 1: Συντομογραφίες τύπων

Περιοχή επιτρεπόμενων θερμοκρασιών

Περιοχή της τοποθέτησης = -5° C έως +50° C
Πριν και μετά την τοποθέτηση = 0°C έως +70° C
(Εσωτερική θερμοκρασία καλωδίου)

Ακτίνα κάμψης
Η μικρότερη επιτρεπόμενη ακτίνα κάμψης ανέρχεται για πλαστικά καλώδια στο 12πλάσιο της εξωτερικής διαμέτρου.
1.2.3 Κυκλώματα Γραμμής Ακουστικών Συχνοτήτων (FTGS-917/)

Για την ανίχνευση ελεύθερης γραμμής, οι γραμμές υποδιαιρούνται σε μεμονωμένα τμήματα. Στο κύκλωμα FTGS τροφοδοτείται στην αρχή του τμήματος κάποιο κωδικοποιημένο εναλλασσόμενο ρεύμα ακουστικής συχνότητας και λαμβάνεται στο τέλος του. Οι άξονες ενός συρμού που εισέρχονται σε ένα τέτοιο τμήμα γραμμής προκαλούν βραχυκύκλωση μεταξύ των σιδηροτροχιών. Η βραχυκύκλωση του άξονα μειώνει την τάση λήψης, με αποτέλεσμα την εκπομπή ενός σήματος «γραμμή κατειλημμένη» για αυτό το τμήμα.

Ο εξοπλισμός γραμμής αποτελείται από ένα κιβώτιο συνδέσεων παραπλεύρως της σιδηροδρομικής γραμμής για τροφοδότηση και παροχή εξόδου της εναλλασσόμενης τάσης ακουστικής συχνότητας μαζί με τους συνδέσμους και τα καλώδια συνδέσμους. Κάθε κιβώτιο συνδέσμου στην γραμμή μπορεί να περιλαμβάνει τον απαραίτητο εξοπλισμό για δύο γειτονικά κυκλώματα γραμμής, π.χ. δύο μονάδες συντονισμού χωρίς συντήρηση, οι οποίες συνδέονται στον πομπό ή στον δέκτη στο ερμάριο FTGS μέσω των καλωδίων εξόδου.

1.2.4 Φωτοσήματα

Τα φωτοσήματα στις γραμμές του ΜΕΤΡΟ είναι δύο ενδείξεων, λευκή – κόκκινη ή κόκκινη – λευκή.

| ☻ ☻ | Point indicator | ENΔΕΙΞΗ ΑΛΛΑΓΗΣ |
| ☻ ☻ | Track end signal | ΣΗΜΑΤΩΔΗΣ ΤΕΛΟΣ ΓΡΑΜΜΗΣ |

Εικόνα 3: Τρόπος Απακόνισης των Φωτοσημάτων στο Σχηματικό Διάγραμμα Γραμμής, ανάλογα της ενδείξης τους

Τα φωτοσήματα με ένδειξη λευκή – κόκκινη τοποθετούνται εκατέρωθεν των αλλαγών τροχιών. Το λευκό δίνει την ένδειξη στον οδηγό του συρμού να συνεχίσει την πορεία του, ενώ το κόκκινο να σταματήσει.
Τα φωτοσήματα με ένδειξη κόκκινη – κόκκινη τοποθετούνται στο τέλος της σιδηροδρομικής γραμμής.

Φωτοσήματα Αλλαγών Τροχιάς

Εικόνα 4: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής με Φωτοσήματα Αλλαγών Τροχιάς

1.2.5 Ηλεκτροκίνητα Χειριστήρια Αλλαγής Τροχιάς

Η αλλαγή τροχιάς είναι μια μηχανική εγκατάσταση η οποία επιτρέπει τον διαχωρισμό μιας γραμμής σε δύο (την κύρια γραμμή που είναι η συνέχεια της και την αποκλίνουσα) ή πραγματοποιεί τη συμβολή δυο γραμμών σε μία. Επιτρέπει την κατ’ επιλογή διέλευση των συρμών σε έναν από τους δύο κλάδους και κατά τις δύο φορές.

Το ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς είναι η συσκευή που συνδέεται στο κινητό τμήμα της αλλαγής τροχιάς, και συγκεκριμένα στις βελόνες, και ελέγχει την κίνησή της αναλόγως την επιθυμητή κατεύθυνση του συρμού. Το χειριστήριο συνδέεται με τις βελόνες της αλλαγής σε τρία σημεία. Το βάκτρο κίνησης προσδένεται στη μηχανική συσκευή (χελιδονουρά ή spherolock) που συγκρατεί τις βελόνες. Οι βελόνες της αλλαγής τροχιάς συνδέονται μεταξύ τους με μια μηχανική συσκευή (χελιδονουρά ή spherolock) στην οποία προσδένεται το βάκτρο κίνησης του χειριστηρίου αλλαγής τροχιάς, το οποίο παίρνει όλο το φορτίο για την κίνησή της. Επιπλέον στις βελόνες συνδέονται τα βάκτρα ελέγχου.
Εικόνα 5: Αλλαγή τροχιάς με χελιδονοουρά

Εικόνα 6: Αλλαγή τροχιάς με Spherolock
Εικόνα 7: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής Χειριστηρίων Αλλαγών Τροχιάς
Εικόνα 8: Απόσπασμα Σχηματικού Διαγράμματος Γραμμής Χειριστήριου Αλλαγών Τροχιάς
ΚΕΦΑΛΑΙΟ 2: ΜΕΘΟΔΟΛΟΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΣΗΜΑΤΟΤΕΧΝΙΚΟΥ ΕΞΟΠΛΙΣΜΟΥ

2.1 Καλωδιώσεις

2.1.1 Μεταφορά καλωδίων

Η μεταφορά των καλωδίων πραγματοποιείται σε στροφεία καλωδίων. Τα στροφεία καλωδίων θα πρέπει να ελεγχθούν κατά την παραλαβή τους για ορατές φθορές. Τα άκρα των καλωδίων θα πρέπει να είναι σφραγισμένα με τάπες και να είναι στερεωμένα στο δίσκο του στροφείου έτσι, ώστε να αποφευχθεί ο κίνδυνος φθοράς κατά τη μεταφόρτωσή τους.

Εικόνα 9: Μεταφορά καλωδίων

Η μεταφορά των στροφείων καλωδίων στο χώρο φύλαξης θα πρέπει να γίνει με κατάλληλα μεταφορικά μέσα και η φόρτωση θα πρέπει να πραγματοποιηθεί με τη βοήθεια κατάλληλων ανυψωτικών μηχανημάτων.

Τα στροφεία καλωδίων θα πρέπει να μεταφέρονται όρθια και να ασφαλίζονται έναντι πιθανής μετατόπισης. Τα στροφεία καλωδίων θα πρέπει να μεταφέρονται στο επίπεδο και σταθερό εδάφιο κατά την εκφόρτωσή τους. Η διάταξη κατασκευής των καλωδίων θα εξασφαλίζεται έναντι του κινδύνου κύλισης, υπάρχει κίνδυνος να λυθούν τα άκρα τους. Εάν το στροφείο κυλιστεί προς την αντίθετη φορά, υπάρχει κίνδυνος να λυθούν τα άκρα του.

2.1.2 Φύλαξη καλωδίων

Τα στροφεία καλωδίων θα πρέπει να φυλάσσονται σε επίπεδο και σταθερό έδαφος και να ασφαλίζονται έναντι του κινδύνου κύλισης. Θα πρέπει να εξασφαλίζεται η προσέγγιση των οχημάτων μεταφοράς στα αποθηκευμένα στροφεία του καλωδίου. Εάν το στροφείο κυλιστεί προς την αντίθετη φορά, υπάρχει κίνδυνος να λυθούν τα άκρα του.
2.1.3 Εκτύλιξη καλωδίου

Αφού αφαιρεθούν οι προστατευτικές σανίδες (εάν υπάρχουν), το καλώδιο θα πρέπει να ελεγχθεί για τυχόν εξωτερικές φθορές, οι οποίες μπορεί να προκλήθηκαν π.χ. από ακατάλληλη μεταφορά του στροφείου.

Το καλώδιο θα πρέπει να ξετυλίγεται πάντοτε από το επάνω μέρος του στροφείου.

Εικόνα 11: Εκτύλιξη καλωδίου

Κατά την εκτύλιξη του καλωδίου, θα πρέπει να υπάρχει πάντοτε η δυνατότητα προοδευτικής ακινητοποίησης του στροφείου, προκειμένου να αποφευχθεί η κάμψη ή το τσάκισμα του καλωδίου. Εάν δεν είναι διαθέσιμο κάποιο σύστημα ακινητοποίησης μπορεί να κατασκευαστεί ένα αυτοσχέδιο φρένο.

Εάν διαπιστωθεί ότι έχουν κολλήσει τα στρώματα του καλωδίου μεταξύ τους, θα πρέπει να ξετυλίγετε με μεγάλη προσοχή. Θα χρειασθεί ένα άτομο να αποκολλήσει το καλώδιο από το τύμπανο.

Εικόνα 12: Σωστή και λάθος εκτύλιξη του καλωδίου
2.1.4 Διαδικασία τοποθέτησης εντός καναλιού (καλωδιοδιάδρομος)

Εάν το κανάλι καλωδίων βρίσκεται σε ελεύθερη διαδρομή, τότε το καλώδιο μπορεί να
tοποθετηθεί απευθείας από το βαγόνι μεταφοράς ή το συρμό εργασίας. Δεν επιτρέπεται
ωστόσο να υπάρχουν εμπόδια, όπως σωλήνες κτλ. Το όχημα επιτρέπεται να κινείται μόνον με
tαχύτητα βάδην.

Εικόνα 13: Τοποθέτηση καλωδίου εντός καναλιού (α’ τρόπος)
Τοποθέτηση καλωδίων μπορεί να γίνει και από σταθερό σημείο, αρκεί να υπάρχει
διαθέσιμο αρκετό προσωπικό.

Εικόνα 14: Τοποθέτηση καλωδίου εντός καναλιού (β’ τρόπος)
Στα κανάλια (τσιμεντένια ή πλαστικά) τα καλώδια τοποθετούνται παράλληλα μεταξύ
tους, η διασταύρωση και η υπερκάλυψη μεταξύ των καλωδίων θα πρέπει να αποφεύγεται.
Λόγω των μεταβολών του μήκους των καλωδίων που οφείλονται σε διακυμάνσεις της
θερμοκρασίας, αυτά δεν πρέπει να τοποθετηθούν πολύ τεντωμένα μέσα στο κανάλι.
Εικόνα 15: Τοποθέτηση καλωδίου εντός καναλιού ή καλωδιαδρόμου

2.1.5 Προστασία των άκρων των καλωδίων

Εάν κατά την τοποθέτηση του καλωδίου χρησιμοποιηθεί μόνον ένα τμήμα του συνολικού μήκους του στροφείου, θα πρέπει τα δύο άκρα του καλωδίου να προστατευθούν από την υγρασία. Τα άκρα του καλωδίου θα πρέπει να σφραγιστούν με κατάλληλες ελαστικές ή πλαστικές τάπες και όχι με άλλα μονωτικά υλικά.

Η τάπα σφραγίζεται μέχρι τέρματος επάνω στο άκρο του καλωδίου και στη συνέχεια σφραγίζεται με θερμό αέρα ή με φλόγιστρα αερίου προπανίου. Με τη θερμότητα η τάπα συρρικνώνεται και στερεώνεται επάνω στο άκρο του καλωδίου, η κόλλα που λιώνει καλύπτει τις ρογμές και τις ανομοιομορφίες της επιφάνειας έτσι, ώστε να εξασφαλίζεται σωστή στεγανοποίηση. Πριν την έναρξη των εργασιών σύνδεσης θα πρέπει να δοθεί προσοχή, ώστε τα άκρα του καλωδίου να παραμείνουν στεγνά ακόμη και μετά την αφαίρεση των ταπών.
2.2 Μεθοδολογία Τερματισμού Καλωδίων στους Κατανεμητές

Οι κατανεμητές καλωδίων τοποθετούνται εντός της σήραγγας, στους οποίους καταλήγουν τα καλώδια. Οι κατανεμητές μπορεί να παίξουν το ρόλο της συνέχειας (μούφας), στη περίπτωση που η απόσταση που πρέπει να καλύψει ένα καλώδιο είναι μεγαλύτερη του ενός χιλιομέτρου, είτε να κατανέμει τις εντολές (με καλώδια) προς τα φωτοσήματα, τις μηχανές αλλαγής τροχιάς και τα κυκλώματα γραμμής.

Οι συνδέσεις των καλωδίων στους κατανεμητές γίνονται με κλεμοσειρές, που ο αριθμός τους καθορίζεται από τον αριθμό των καλωδίων που τερματίζουν σε αυτούς, συνήθως από ένα έως τρία, με μία επιπλέον κλεμοσειρά για τις γειώσεις των οπλισμών.

Τα καλώδια εισέρχονται στους κατανεμητές από οπές που βρίσκονται στο κάτω μέρος των κατανεμητών και στερεώνονται με ειδικούς στυπιοθλίπτες. Πριν την είσοδο των καλωδίων στους κατανεμητές, βεβαιώνομαστε όλα είναι με βάση τα σχέδια, σωστό σχέδιο με βάση τον κατανεμητή, ότι έχουμε στα χέρια μας τα σωστά καλώδια.

Αφού εισάγουμε τα καλώδια από τις οπές, τους αφαιρούμε την μόνωση κρατώντας ορατούς τους μεταλλικούς οπλισμούς ώστε να τους γειώσουμε. Αφού γειώσουμε τους οπλισμούς, περνάμε ειδικό θερμοσυστελλόμενο υλικό για να μονώσουμε μόνο το κομμάτι αυτό που εξέχει με τους οπλισμούς, περίπου 10cm. Η γείωση πραγματοποιείται με τη σύνδεση του οπλισμού με πολύκλωνο καλώδιο διαμέτρου 6mm² που συνδέεται με τον οπλισμό με ελατηριακό σύνδεσμο τύπου Scotchcast. Στην άλλη άκρη της γείωσης τοποθετούμε κος και το πρεσάρουμε. Στη συνέχεια συνδέεται στην κλεμοσειρά των γειώσεων.

Στη συνέχεια κάνουμε ένα ελαφρύ σπάσιμο στο καλώδιο ώστε μαζί και με τα υπόλοιπα καλώδια που θα υπεισέλθουν στον κατανεμητή, να «συγκροτήσουν» ένα κορμό από όπου θα ξεκινούν τα καλώδια και θα καταλήγουν στην σωστή κλέμα. Μπορούμε να χρησιμοποιήσουμε δεματικές για να εξασφαλίσουμε ότι τα καλώδια θα «συγκροτούν» κορμό.

Στο τέλος αριθμούμε τους κλώνους και τοποθετούμε ετικέτες στα καλώδια.
Εικόνα 17: Εσωτερικό ΚΥ. Σύνδεση καλωδίων στις κλεμοσειρές

Κλεμοσειρές
Γειώσεις
Ετικέτες
2.2.1 Τρόπος σύνδεσης ανά τύπο καλωδίου

2.2.1.1 Καλωδιοπλοκή με κλώνους

Τρόπος αρίθμησης

Ο αρχικός κλώνος αρίθμησης σε κάθε στρώμα είναι μπλε χρώματος, όλοι οι άλλοι κλώνοι είναι γκρι.

Οι κλώνοι αριθμούνται αρχίζοντας από τον κλώνο αρίθμησης του πρώτου στρώματος, συνεχίζοντας σε όλα τα στρώματα από μέσα προς τα έξω.

Για την υλοποίηση μίας ενιαίας αρίθμησης τα δύο άκρα του καλωδίου χαρακτηρίζονται ως εξής:

Αρχή καλωδίου = άκρο Α

Τέλος καλωδίου = άκρο Ε.

Στο άκρο Α η μέτρηση γίνεται κατά τη φορά των δεικτών του ρολογιού, δηλαδή δεξιόστροφα. Το άλλο άκρο του καλωδίου θα είναι επομένως το άκρο Ε. Εδώ η μέτρηση γίνεται αριστερόστροφα.

Παράδειγμα

Εικόνα 18: Αρίθμηση κλώνων

2.2.1.2 Καλώδια με πλοκή τετραπλού αστέρα

Τρόπος αρίθμησης

Το βασικό χρώμα όλων των κλώνων είναι γκρι. Χαρακτηρισμός των κλώνων με μαύρους ή μπλε δακτύλιους.

Κορμός I

Χωρίς δακτύλιο

Ακρο 1a

Ακρο 1b

Κορμός II
Εικόνα 19: Λομή κλώνων καλωδίου πλοκής τετραπλού αστέρα

Τα ζεύγη των κλώνων έχουν διαγώνια διάταξη, δηλαδή οι αντιστοιχισμένοι κλώνοι βρίσκονται αντικριστά και χαρακτηρίζονται ως κορμός. Σε κάθε τετράδα επομένως διακρίνουμε τον κορμό I και τον κορμό II.

Εικόνα 20: Ζεύγη κλώνων

Η αρίθμηση των κλώνων διέρχεται διαδοχικά από όλα τα στρώματα και από μέσα προς τα έξω. Για να είναι δυνατή η απαρίθμηση των κλώνων, η πρώτη τετράδα κάθε στρώματος είναι τυλιγμένη είτε με κόκκινο νήμα είτε με κόκκινη ταινία (ονομάζεται τετράδα αρίθμησης).

Για την υλοποίηση μίας ενιαίας αρίθμησης τα δύο άκρα του καλωδίου χαρακτηρίζονται ως εξής:

Αρχή καλωδίου = Άκρο A \quad Τέλος καλωδίου = Άκρο E.

Στο άκρο A η μέτρηση γίνεται κατά τη φορά των δεικτών του ρολογιού, δηλαδή δεξιόστροφα. Το άλλο άκρο του καλωδίου θα είναι επομένως το άκρο E. Εδώ η μέτρηση γίνεται αριστερόστροφα.
2.3 Μεθοδολογία Εγκατάστασης Κυκλωμάτων Γραμμής

Η εγκατάσταση των συνδέσμων S ξεκινά με τον προσδιορισμό της ακροβούς χιλιομετρικής θέσης που θα τοποθετηθούν, με τη βοήθεια τοπογραφικών αποτυπώσεων και οργάνων.
Επιπροσθέτως, λαμβάνεται μέριμνα για την ασφαλή μεταφορά όλων των προς εγκατάσταση υλικών από τον χώρο αποθήκευσής τους.
Στο δίκτυο της Α.Μ.Ε.Λ. υπάρχουν τρία διαφορετικά είδη συνδέσμων:
✓ Απλός Σύνδεσμος
✓ Τετραπλός Σύνδεσμος
✓ Τερματικός Σύνδεσμος

2.3.1.1 Εγκατάσταση Μεταλλικής Βάσης Στήριξης Ακροβούτιου

Κατά την εγκατάσταση της μεταλλικής βάσης στήριξης του ακροβιωτίου FTGS πρέπει να τηρείται η ακόλουθη διαδικασία:
• Τοποθετούμε αρχικά την μεταλλική βάση με το ακροβιώτιο στο ύψος που ορίζει το σχέδιο εγκατάστασής και φροντίζουμε ώστε το ακροβιώτιο να βρίσκεται περίπου στη μέση των δύο στρωτήρων και σε απόσταση 55±15 εκατοστών από την σιδηροτροχιά.
• Ανοίγουμε, με τη βοήθεια τρυπανίου με «μύτη» διαμέτρου 0,6Φ, τέσσερις τρύπες.
• Καθαρίζουμε καλά την επιφάνεια από τη σκόνη, ώστε οι τρύπες να μην καλυφθούν.
• Τοποθετούμε στις τρύπες όπατ διαμέτρου 0,6Φ.
• Τοποθετούμε την μεταλλική βάση και την σφίγγουμε καλά και με τις τέσσερις βίδες.
2.3.1.2 Τοποθέτηση Ακροκιβωτίου στη Μεταλλική Βάση Στήριξης

Κατά την εγκατάσταση του ακροκιβωτίου στη μεταλλική βάση στήριξης πρέπει να τηρείται η ακόλουθη διαδικασία:

- Ελέγχονται οι εσοχές, οι οποίες προστατεύουν το ακροκιβώτιο, έτσι ώστε αυτό να μην περιστρέφεται.
- Τοποθετείται το ακροκιβώτιο πάνω στη βάση στήριξης.
- Προσαρμόζεται σε τέτοια θέση, ώστε οι συνδέσεις των καλωδίων να είναι παράλληλα στη σιδηροτροχιά.
- Βιδώνεται στις εσοχές της βάσης στήριξης.

2.3.1.3 Σύνδεση Συνδέσμων στις Σιδηροτροχιές

Οι συνδέσμοι συνδέονται στις σιδηροτροχιές, σύμφωνα με την ακόλουθη διαδικασία:

- Σήμανση της θέσης πάνω στη σιδηροτροχιά, στην οποία πρόκειται να γίνει η σύνδεση.
- Δημιουργία οπής Φ19 στη σημαδεμένη θέση με διατρητικό μηχάνημα.
- Τοποθέτηση ολομοίρου κυλίνδρου στη σημαδεμένη θέση με χρήση ειδικής πρέσας.
- Προσαρμογή ειδικού κοχλιωτού συνδέσμου στην οπή.
- Τοποθέτηση ακροδέκτη καλωδίου στον κοχλία.
- Τοποθέτηση ροδέλας και παξιμαδιού ασφαλείας.
- Πριν το σφίξιμο του παξιμαδιού ασφαλείας σιγουρευόμαστε ότι το καλώδιο είναι τοποθετημένο σωστά.

Ανάλογα με τον τύπο των συνδέσμων που πρόκειται να εγκατασταθούν, γίνεται και η χρήση των αντίστοιχων σχεδίων, όπως περιγράφονται παρακάτω.

2.3.1.3.1 Απλός σύνδεσμος
2.3.1.3.2 Τετραπλός σύνδεσμος
2.3.1.3.3 Τερματικός σύνδεσμος
Εικόνα 22: Απλός σύνδεσμος 1
Εικόνα 24: Απλός σύνδεσμος λεπτομέρειας
Εικόνα 25: Τετραπλός σύνδεσμος
Εικόνα 26: Τετραπλός σύνδεσμος λεπτομέρειας
Εικόνα 27: Τερματικός σύνδεσμος
Εικόνα 28: Τερματικός σύνδεσμος λεπτομέρειας
2.3.1.4 Σύνδεση Συνδέσμου στο Ακροκιβώτιο

Μετά την εγκατάσταση των συνδέσμων στις σιδηροτροχιές, ακολουθεί η σύνδεση των άκρων τους στο αντίστοιχο ακροκιβώτιο, με την ακόλουθη διαδικασία:

- Αφαιρείται ο κοχλίας από τις αντίστοιχες θέσεις του ακροκιβωτίου.
- Τοποθετούνται τα αντίστοιχα καλώδια, σύμφωνα με τα σχέδια εγκατάστασης.
- Βιδώνονται με ροπή 21 Nm.
- Μετά από λίγες μέρες, οι συνδέσεις θα πρέπει να ελέγχονται και να επαναλαμβάνεται η σύσφιξη τους.

Εικόνα 29: Εσωτερικό Ακροκιβώτιο

2.3.1.5 Σύνδεση Καταληκτικού Καλωδίου

Το καταληκτικό καλώδιο εισέρχεται στο ακροκιβώτιο από ειδική οπή και οι κλώνοι του συνδέονται σύμφωνα με τα ηλεκτρολογικά σχέδια σε ειδική κλεμμοσειρά.
Εικόνα 30: Ηλεκτρολογικό σχέδιο σύνδεσης καταληκτικών καλωδίων κυκλωμάτων γραμμής
2.3.1.6 Στερέωση Συνδέσμων σε Σιδηροτροχιές και Στρωτήρες

Η στερέωση των συνδέσμων στις σιδηροτροχιές και στους στρωτήρες γίνεται με βάση την ακόλουθη διαδικασία:

- Τα καλώδια ασφαλίζονται μεταξύ τους με κατάλληλου είδους δεματικά.
- Στερεώνονται στους στρωτήρες με κατάλληλου είδους δεματικά.
- Στερεώνονται στις σιδηροτροχιές με ειδικά στηρίγματα (γλίστρες και πιάστρες).

Εικόνα 31: FTGS - Στήριξη καλωδίων στη γραμμή

2.4 Μεθοδολογία Εγκατάστασης Φωτοσημάτων

✓ Ελέγχουμε ότι έχουμε όλα τα απαραίτητα υλικά-εξοπλισμό για την εγκατάσταση, δηλαδή: πίνακα ελέγχου, φωτόσημα, αγωγό γείωσης, μεταλλική σωλήνα για το καλώδιο γείωσης, μεταλλικά ούπατ και βίδες για την στήριξη του φωτοσήματος στο τοίχωμα της σήραγγας, «έλατο» γείωσης (χάλκινο εξάρτημα που συνδέει τους αγωγούς γείωσης στη σχάρα).
✓ Στερεώνουμε τον πίνακα ελέγχου και το φωτόσημα με τα μεταλλικά ούπατ στο τοίχωμα της σήραγγας.
Συνδέουμε, τερματίζουμε στο πίνακα ελέγχου το καταληκτικό καλώδιο από το αντίστοιχο KV και το καλώδιο από το φωτόσημα, σύμφωνα με το ηλεκτρολογικό σχέδιο, όπως φαίνεται παρακάτω.

Όπως και στα καλώδια που τερματίζουν στα KV, έτσι και εδώ τοποθετούμε γείωση στον οπλισμό του καλωδίου.

Στερεώνουμε στο τοίχωμα την μεταλλική σωλήνα απ’ όπου θα διελεύσει ο αγωγός γείωσης.

Ο αγωγός γείωσης του φαναριού συνδέεται με τον αγωγό γείωσης του πίνακα ελέγχου στην σχάρα με το «έλατο». Στη συνέχεια η γείωση, διαμέσου της μεταλλικής σωλήνας, καταλήγει και συνδέεται στον αγωγό γείωσης της σχάρας καλωδίων που διέρχεται πάνω από το φωτόσημα.
Εικόνα 32. Ηλεκτρολογικό σχέδιο σύνδεσης καλωδίων φωτοσήματος

1) V2S132-M051-C60
2) V2S132-M054-C60
3) V2S132-M059-C60
4) V2S132-M050-C60
5) C05089-M09-831

<table>
<thead>
<tr>
<th>SIEMENS</th>
<th>ΣΙΑΕΜΟΣ ΑΛΕΞΑΝΔΡΟΣ ΠΑΝΑΓΟΤΗΣ ΒΙΒΛΙΟ ΚΥΚΛΟΦΩΝΙΩΝ ΣΩΤΟ ΚΑΛΩΞΙΑ ΔΙΑΓΡΑΜΜΑ ΣΥΝΕΔΡΙΟΣ ΣΗΜΑΤΟΔΟΤΗΣ STATION ΑΛΕΞΑΝΔΡΟΣ ΠΑΝΑΓΙΟΥ BOC OUTDOOR CABLED-SIGNAL CONNECTION DIAGRAM OLE2760</th>
<th>2S51LV620C100D</th>
</tr>
</thead>
<tbody>
<tr>
<td>Date</td>
<td>9/29/2003</td>
<td>SWIN102</td>
</tr>
</tbody>
</table>
Εικόνα 33: Κιβώτιο Ελέγχου και Φωτόσημα

Μεταλλική σωλήνα

Φωτόσημα

Πίνακας Ελέγχου
Εικόνα 34: Φωτόσημα στη γραμμή
Εικόνα 35: Κιβώτιο Ελέγχου και Φωτόσημα στο Τέρμα της Γραμμής
Εικόνα 36: Φωτόσημα. Σχάρα Καλωδίων και Αγωγός Γείωσης

2.5 Μεθοδολογία Εγκατάστασης Χειριστηρίου Αλλαγής Τροχιάς

- Στερεώνεται η βάση έδρασης του χειριστηρίου αλλαγής τροχιάς, παραπλεύρως της σιδηροδρομικής γραμμής, σύμφωνα με τα σχέδια εγκατάστασης.
- Στερεώνεται το ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς, πάνω στη βάση έδρασης.
- Ευθυγραμμίζεται το χειριστήριο με την κορυφή της σιδηροτροχιάς.
- Τοποθετείται το βάκτρα ελέγχου στις βελόνες της αλλαγής.
- Συνδέονται οι κλώνοι του καταληκτικού καλωδίου, σύμφωνα με το ηλεκτρολογικό σχέδιο.
- Πρέπει να κινούνται ομαλά και αθόρυβα τα βάκτρα με χρήση χειροστροφάλου.
Εικόνα 37: Βάση έδρας ηλεκτροκίνητου χειριστήριου αλλαγής τροχιάς

Εικόνα 38: Ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς σε αλλαγή τροχιάς με spherolock
Εικόνα 39: Ηλεκτροκίνητο χειριστήριο αλλαγής τροχιάς σε αλλαγή τροχιάς με χελιδονουρά
Εικόνα 40: Σχέδιο εγκατάστασης χειριστηρίου αλλαγής τροχιάς, τύπου S700 της Siemens
Εικόνα 41: Ηλεκτρολογικό σχέδιο σύνδεσης καταληκτικού καλωδίου ηλεκτροκίνητου χειριστηρίου αλλαγής τροχιάς
2.6 Δοκιμές Καλωδίων (συνέχειας, μόνωσης, αντίστασης βρόχου)

2.6.1 Σκοπός

Σκοπός της δοκιμής συνέχειας είναι να βεβαιωθεί πως κανένας κλώνος, καθώς και ο οπλισμός (χάλκινος ή σιδήρου) δεν είναι κομμένος.

Σκοπός της δοκιμής μόνωσης είναι να βεβαιωθεί ότι κανένας κλώνος δεν βραχυκυκλώνει με κανέναν άλλο (κλώνος με κλώνο) και ότι κανένας κλώνος δεν βραχυκυκλώνει με την ταινία χαλκού (κλώνος με γη).

Σκοπός της μέτρησης αντίστασης βρόχου είναι να επιβεβαιωθεί ότι αυτή βρίσκεται εντός των ορίων που καθορίζει ο κατασκευαστής του καλωδίου.

2.6.2 Προετοιμασία

Πριν από κάθε δοκιμή είναι απαραίτητο να απογυμνώνεται το καλώδιο, ώστε να είναι εμφανείς:
- οι κλώνοι του καλωδίου
- η ταινία χαλκού
- ο οπλισμός του καλωδίου

2.6.3 Διαδικασία δοκιμών

2.6.3.1 Δοκιμή συνέχειας

- Στη μια άκρη του καλωδίου επιλέγουμε έναν κλώνο ως κλώνο αναφοράς. Ενώνουμε κάθε φορά τον κλώνο αναφοράς και έναν άλλο κλώνο, με το ακουστικό. Στην άλλη άκρη του καλωδίου, ενώνουμε τους αντίστοιχους κλώνους. Εάν υπάρχει επικοινωνία μεταξύ των ακουστικών, τότε ο έλεγχος είναι επιτυχής. Η παραπάνω διαδικασία συνεχίζεται για όλους του κλώνους.
- Στη μια άκρη του καλωδίου επιλέγουμε έναν κλώνο ως κλώνο αναφοράς. Ενώνουμε τον κλώνο αναφοράς και τον χάλκινο οπλισμό, με το ακουστικό. Στην άλλη άκρη του καλωδίου, ενώνουμε τον αντίστοιχο κλώνο και τον χάλκινο οπλισμό. Εάν υπάρχει επικοινωνία μεταξύ των ακουστικών, τότε ο έλεγχος είναι επιτυχής.
- Στη μια άκρη του καλωδίου επιλέγουμε έναν κλώνο ως κλώνο αναφοράς. Ενώνουμε τον κλώνο αναφοράς και τον σιδηρόν οπλισμό, με το ακουστικό. Στην άλλη άκρη του καλωδίου, ενώνουμε τον αντίστοιχο κλώνο και τον οπλισμό σιδήρου. Εάν υπάρχει επικοινωνία μεταξύ των ακουστικών, τότε ο έλεγχος είναι επιτυχής.
2.6.3.2 Δοκιμή μόνωσης

2.6.3.2.1 Μέτρηση μόνωσης, κλώνου με κλώνο

Στη μια άκρη του καλωδίου, επιλέγουμε δυο κλώνους. Στην άλλη άκρη του καλωδίου, συνδέουμε το όργανο Megger, στους αντίστοιχους κλώνους. Εάν η μέτρηση είναι μεγαλύτερη από 30 Mohm, τότε ο έλεγχος είναι επιτυχής.

Η παραπάνω διαδικασία συνεχίζεται για όλους τους κλώνους, για όλους τους δυνατούς συνδυασμούς.

2.6.3.2.2 Μέτρηση μόνωσης κλώνου με γη

Στη μια άκρη του καλωδίου γειώνουμε την επαγωγική ταινία χαλκού μέσω ελατηριών σφιγκτήρων και καλώδιο γείωσης 16 mm² και επιλέγουμε έναν κλώνο. Στην άλλη άκρη του καλωδίου, συνδέουμε το όργανο Megger με την επαγωγική ταινία χαλκού και τον αντίστοιχο κλώνο. Εάν η μέτρηση είναι μεγαλύτερη από 30 Mohm, τότε ο έλεγχος είναι επιτυχής.

Η παραπάνω διαδικασία συνεχίζεται για όλους τους κλώνους.

2.6.3.3 Μέτρηση αντίστασης βρόχου

Στη μια άκρη του καλωδίου επιλέγουμε έναν κλώνο ως κλώνο αναφοράς. Βραχυκυκλώνουμε κάθε φορά τον κλώνο αναφοράς με έναν άλλο κλώνο. Στην άλλη άκρη του καλωδίου μετράμε την αντίσταση των αντίστοιχων κλώνων με ένα ομίμομετρο.

Η παραπάνω διαδικασία συνεχίζεται για όλους τους κλώνους.
ΚΕΦΑΛΑΙΟ 3: ΠΛΑΝΟ ΕΡΓΟΥ ΚΑΙ ΕΚΠΑΙΔΕΥΣΗ ΠΡΟΣΩΠΙΚΟΥ ΓΙΑ ΕΡΓΑΣΙΑ ΕΠΙ & ΠΛΗΣΙΟΝ ΤΗΣ ΓΡΑΜΜΗΣ

3.1 Πλάνο Έργου (Φάσεις Υλοποίησης της Κατασκευής)

Οι εργασίες ξεκινούν με την παράδοση του εξοπλισμού, η οποία πραγματοποιείται τμηματικά ανά κατηγορία, από τον προμηθευτή.

Αρχικά, τοποθετούνται οι κύριες και οι καταληκτικές καλωδιώσεις και στη συνέχεια ο υπόλοιπος εξοπλισμός γραμμής (Κατανεμητές Καλωδίων, Κυκλώματα Γραμμής, Φωτοσήματα, Χειριστήρια Αλλαγής Τροχιάς). Με την ολοκλήρωση της τοποθέτησης των καλωδιώσεων ξεκινούν οι δοκιμές των καλωδίων και στη συνέχεια ολοκληρώνονται και οι συνδέσεις.

3.2 Εκπαίδευση για Ασφαλή Εργασία Επί & Πλησίον των Γραμμών

Η εκπαίδευση γίνεται από ειδικευμένο προσωπικό της Αττικό Μετρό Εταιρεία Λειτουργίας (ΑΜΕΛ) και σκοπός της είναι η εκπαίδευση του προσωπικού που εργάζεται στο μετρό στους κανόνες ασφαλείας για να αποτραπεί κάποιο ατύχημα και το πώς αντιδρούμε σε
περίπτωση που συμβεί κάτι. Ακόμα τα μαθήματα περικλείουν μέθοδο προσανατολισμού, ώστε να γνωρίζουμε που βρίσκομαστε και να βρίσκουμε την πιο κοντινή διέξοδο.

Η εκπαίδευση χωρίζεται σε εξί επίπεδα, που αντιστοιχούν σε εξί επίπεδα αρμοδιότητας:
- Ενημερωμένος επί θεμάτων τροχιάς (αναλύεται παρακάτω)
- Πιστοποιημένος για εργασίες επί ή πλησίον της τροχιάς
- Παρατηρητής
- Υπεύθυνος Προστασίας Ομάδας (ΥΠΟ)
- Υπεύθυνος για την έγκριση Μετακίνησης Συρμού
- Υπεύθυνος Δεσμευμένης Περιοχής

Κάθε άτομο που εργάζεται εντός της γραμμής έχει περάσει από το πρώτο επίπεδο εκπαίδευσης που σημαίνει ότι γνωρίζει τους κινδύνους που υπάρχουν κατά την εκτέλεση εργασιών επί της γραμμής και έχει την απαιτούμενη γνώση για να τις εκτελεί, μόνο κάτω από την επίβλεψη του ΥΠΟ.

3.3 Ρεύμα έλξης

Δίπλα σε κάθε τροχιά είτε μέσα στη σήραγγα είτε στο αμαξοστάσιο, υπάρχει μια ράβδος στηριγμένη σε μονωτήρες η οποία περιβάλλεται από κίτρινα προστατευτικά καλύμματα και τροφοδοτείται με ρεύμα έλξης. Το ρεύμα έλξης είναι ηλεκτρική ενέργεια 750 VDC (συνεχής τάση) με την οποία τροφοδοτείται η Ηλεκτροφόρος 3η ράβδος για τη κίνηση των Συρμών.

- Θεωρούμε πάντοτε την ηλεκτροφόρο 3η ράβδο ενεργοποιημένη
 - Δεν την ακουμπάμε σε καμία περίπτωση και δεν προσπαθούμε να περάσουμε από πάνω της
 - Δεν μεταφέρουμε φορτία ή εξοπλισμό από πάνω της, καθώς επίσης δεν αφήνουμε ρούχα, εργαλεία ή οποιονδήποτε άλλο εξοπλισμό.
 - Δεν πατάμε νερά που έρχονται σε επαφή με την ράβδο

3.4 Βασικοί κανόνες ασφαλείας και κίνηση πεζών εντός του συρμού

Προσωπικό που κινείται στους χώρους εντός ή πλησίον του Συρμού πρέπει να φοράει Γυάλινο Υψηλής Διακριτότητας (HiVi). Το προσωπικό ή οι επισκέπτες πρέπει να βαδίζουν μόνο στους εγκεκριμένους πεζοδιάδρομους και τις πεζοδιαβάσεις.

- Θεωρούμε ως χώρο ασφαλείας, περιοχή που απέχει από τον επερχόμενο Συρμό και από την Ηλεκτροφόρο 3η Ράβδο, απόσταση τουλάχιστον 80 εκατοστών.

Όταν βαδίζουμε σε πεζοδιάδρομο, πριν διασχίσουμε τις τροχιές και πάντα από χώρο ασφαλείας, ελέγχουμε δεξιά/αριστερά για τυχόν διέλευση συρμού και κατόπιν διασχίζουμε προσεκτικά την τροχιά αποφεύγοντας να πατάμε στη σιδηροτροχιά.

Εάν κινούμαστε από εγκεκριμένο πεζοδιάδρομο και πρέπει να περάσουμε εμπρός από σταθμευμένο συρμό πρέπει:
- Να σταθούμε σε χώρο ασφαλείας
- Εάν υπάρχει οδηγός μέσα, να περιμένουμε να μας αντιληφθεί και μόνο με δική του άδεια διασχίζουμε τη τροχιά.

Εάν δεν υπάρχει οδηγός ελέγχουμε τα φώτα του συρμού:
Εάν είναι αναμμένα τα κόκκινα φώτα, μπορούμε να διασχίσουμε την τροχιά εμπρός του συρμού με προσοχή. Τα κόκκινα φώτα είναι ένδειξη πως ο συρμός δεν θα κινηθεί προς την κατεύθυνση που βρισκόμαστε.

Εάν τα φώτα του συρμού είναι σβηστά, μπορούμε να διασχίσουμε την τροχιά εμπρός του συρμού με προσοχή.

Εάν είναι αναμμένα τα λευκά φώτα του συρμού δεν διασχίζουμε την τροχιά. Τα λευκά φώτα είναι ένδειξη πως ο συρμός πρόκειται να κινηθεί προς την φορά που βρισκόμαστε.

3.5 Διακόπτης Ρεύματος Έλξης

Οι συσκευές των Διακοπτών Ρεύματος Έλξης - ΔΡΕ (TCR – Traction Current Removal) χρησιμοποιούνται για τη διακοπή του Ρεύματος Έλξης από την Ηλεκτροφόρο 3η Ράβδο, σε περιπτώσεις έκτακτης ανάγκης. Οι ΔΡΕ βρίσκονται:

- Στις αποβάθρες των σταθμών του Δικτύου, ένας σε κάθε απόληξη και μέτωπο των αποβαθρών.
- Στη Σήραγγα, κάθε 200 μέτρα περίπου στον πεζοδιάδρομο.
- Παραπάνω από ένας στα σημεία όπου γειτονεύουν τμήματα ρεύματος έλξης (τόσοι όσοι τα αντίστοιχα τμήματα).

Για τον εύκολο εντοπισμό των ΔΡΕ ακριβώς πάνω από τη θέση τους, ο φωτισμός της Σήραγγας είναι κίτρινος.
Εικόνα 42: Διακόπτης Ρεύματος Έλξης
Όταν πιεστεί το κομβίο ενεργοποίησης ΔΡΕ:

Διακόπτεται το Ρεύμα έλξης και στις δύο τροχιές στο τμήμα ρεύματος έλξης όπου ο ΔΡΕ ανήκει.

Ενεργοποιείται άμεση τηλεφωνική γραμμή με τον Ελεγκτή Ισχύος στο Κέντρο Ελέγχου Λειτουργίας, στο Σύνταγμα.

Στα ΔΡΕ νέου τύπου υπάρχει ενδεικτική λυχνία, η οποία ανάβει όταν ενεργοποιηθεί ο ΔΡΕ ή το κομβίο επικοινωνίας. Η λυχνία παραμένει αναμένει έως ότου τερματιστεί η επικοινωνία από τον Ελεγκτή Ισχύος.

Διαβάζοντάς του την πληροφοριακή πινακίδα, ο Ελεγκτής Ισχύος αναγνωρίζει σε πιο σημείο γίνεται το συμβάν που του περιγράφουμε:

Εικόνα 43: Πληροφοριακή πινακίδα ΔΡΕ

Όταν πιεστεί μόνο το κομβίο επικοινωνίας, ενεργοποιείται άμεση τηλεφωνική γραμμή με τον Ελεγκτή Ισχύος στο Κέντρο Ελέγχου, χωρίς να διακοπεί το Ρεύμα Έλξης.
3.6 Προϋποθέσεις για ασφαλή εργασία επί ή πλησίον της τροχιάς

Προσωπικό που εργάζεται επί ή πλησίον της τροχιάς, εκτός από την κάρτα πιστοποίησης που αποδεικνύει το επίπεδο αρμοδιότητάς του, πρέπει να φέρεται τα παρακάτω Μέσα Ατομικής Προστασίας:

- Γιλέκο υψηλής διακριτότητας (HiVi)
- Υποδήματα ασφαλείας, προδιαγραφών ΕΝ 345 τουλάχιστον
- Ανάλογα με τη φύση της εργασίας, μπορεί να φέρει επιπρόσθετα: κράνος, μονωτικά γάντια, προστατευτικά γυαλιά κτλ.

Εικόνα 44: Μέσα ατομικής προστασίας

3.7 Προσανατολισμός στη σήραγγα

Εικόνα 45: Προσανατολισμός εντός της σήραγγας
Όταν εργαζόμαστε μέσα στη σήραγγα μπορούμε να προσανατολιστούμε παρατηρώντας τις παρακάτω ενδείξεις:

✓ Το σωλήνα του συστήματος πυρόσβεσης, ο οποίος βρίσκεται πάντα από τον πεζοδιάδρομο 2.
✓ Τις πινακίδες με τις χιλιομετρικές ενδείξεις, οι οποίες βρίσκονται κάθε 50 ή 100 μέτρα μέσα στη σήραγγα και είναι τοποθετημένες:
 o Επί της τροχιάς ή
 o Στο τοίχωμα της σήραγγας ή
 o Στην οροφή της σήραγγας.

Έχουν μια κάθετη χρωματιστή γραμμή που συμβολίζει τη γραμμή κυκλοφορίας (κόκκινη ή μπλε). Ο τριψήφιος αριθμός αντιστοιχεί σε εκατοντάδες μέτρα ενώ ο τετραψήφιος σε δεκάδες μέτρα, που δείχνουν την απόσταση από την αρχή της γραμμής.
✓ Την επιγραφή των ΔΡΕ.
✓ Τα Τεχνικά δωμάτια (φρεάτια εξαερισμού, αντιλιστάσια κλπ)
✓ Τις πινακίδες σήμανσης αλλαγών στα τοιχώματα της σήραγγας.
ΒΙΒΛΙΟΓΡΑΦΙΑ

[1] ΜΕΘΟΔΟΛΟΓΙΑ ΤΕΡΜΑΤΙΣΜΟΥ ΚΑΛΩΔΙΩΝ ΣΗΜΑΤΟΔΟΤΗΣΗΣ
«ΑΚΤΩΡ Α.Τ.Ε. ΟΔΟ982/ΜΕ/ΗΛΜ/ΣΜΤ/ΤΕ/ΜΕΘ/001 ΕΚΔΟΣΗ Α΄ 01/12/2012»

[2] ΜΕΘΟΔΟΛΟΓΙΑ ΔΟΚΙΜΩΝ ΚΑΛΩΔΙΩΝ ΧΑΛΚΟΥ.
«ΑΚΤΩΡ Α.Τ.Ε. ΟΔΟ982/ΜΕΘ/12 ΕΚΔΟΣΗ Β΄ 04/10/2012»

[3] ΜΕΘΟΔΟΛΟΓΙΑ ΕΓΚΑΤΑΣΤΑΣΗΣ ΚΑΙ ΣΥΝΔΕΣΕΩΝ ΚΑΛΩΔΙΩΝ ΧΑΛΚΟΥ.
«ΑΚΤΩΡ Α.Τ.Ε. ΟΔΟ982/ΜΕΘ/11 ΕΚΔΟΣΗ Β΄ 04/10/2012»

[4] ΜΕΘΟΔΟΛΟΓΙΑ ΚΑΤΑΣΚΕΥΗΣ ΗΛΕΚΤΡΙΚΟΥ ΑΡΜΟΥ ΓΡΑΜΜΗΣ FTGS.
«ΑΚΤΩΡ Α.Τ.Ε. ΟΔΟ987/ΜΕΘ/02 ΕΚΔΟΣΗ Γ΄ 26/02/2010»

[5] ΟΔΗΓΙΑ ΕΛΕΓΧΟΥ ΕΡΓΑΣΙΑΣ ΕΓΚΑΤΑΣΤΑΣΗ ΗΛΕΚΤΡΟΚΙΝΗΤΟΥ ΧΕΙΡΙΣΤΗΡΙΟΥ ΑΛΛΑΓΗΣ ΤΡΟΧΙΑΣ.
«ΑΚΤΩΡ Α.Τ.Ε. ΟΔΟ987/ΟΕΕ/21 ΕΚΔΟΣΗ Β΄ 26/02/2010»

[6] ΥΠΟΣΥΣΤΗΜΑ ΣΗΜΑΤΟΔΟΤΗΣΗΣ - ΠΡΟΔΙΑΓΡΑΦΕΣ ΤΟΠΟΘΕΤΗΣΗΣ ΚΑΛΩΔΙΩΝ.
«SIEMENS 23/01/2014».

[7] SPHEROLOCK® NG SWITCH DEVICE - Installation and Setting Instructions
«VOESTALPINE VAE GmbH 03/08/2006».

[8] ΑΣΦΑΛΕΙΑ ΣΤΗΝ ΕΡΓΑΣΙΑ ΕΠΙ Η ΠΛΗΣΙΟΝ ΤΗΣ ΤΡΟΧΙΑΣ. «ΣΤΑΣΥ 002/003 07/05/2008».
ΣΥΜΠΕΡΑΣΜΑΤΑ

Το έργο της σηματοδότησης, όπως φαίνεται και από την παραπάνω περιγραφή των εργασιών και των εξαρτημάτων που χρησιμοποιούνται για την πραγματοποίησή της, είναι ένα δύσκολο έργο από την άποψη του άγκου και του είδους των εργασιών που χρειάζεται να γίνουν. Οι εργασίες πρέπει να γίνονται μόνο από εξειδικευμένο προσωπικό.

Μπορούμε όμως να πούμε με ασφάλεια, ότι το έργο της σηματοδότησης στην κυριολεξία «σώζει ζωές». Σκοπός αυτών των εργασιών είναι η ασφαλής λειτουργία και κίνηση των συρμών των τρένων, εντός των γραμμών και άρα είναι απαραίτητες, για να έχουμε ομαλή λειτουργία των συρμών του τρένου εντός της γραμμής του ΜΕΤΡΟ ή του ΟΣΕ.