ΠΡΟΓΡΑΜΜΑ ΜΕΤΑΠΤΥΧΙΑΚΩΝ ΣΠΟΥΔΩΝ
"Διαχείριση και Ενεργειακή Βελτιστοποίηση Συστημάτων"

ΜΕΤΑΠΤΥΧΙΑΚΗ ΕΡΓΑΣΙΑ

«Μελέτη υδροηλεκτρικής εγκατάστασης μικρής ισχύος με ΥΣ τύπου Pelton»

Του Μεταπτυχιακού Φοιτητή

Παναγιώτη Σ. Δημολίκα

Επιβλέπων

Παντελής Μαλατέστας,
Καθηγητής

Αθήνα Δεκέμβριος 2018
ΕΥΧΑΡΙΣΤΙΕΣ

Στο σημείο αυτό θα ήθελα να εκφράσω τις ευχαριστίες μου σε όσους με βοήθησαν κατά την διάρκεια της εκπόνηση της παρούσας διπλωματικής εργασίας.

Ευχαριστώ τον καθηγητή κ. Παντελή Β. Μαλατέστα για την πολύτιμη καθοδήγησή του, το ενδιαφέρον και τη διακριτική επίβλεψη του στη διπλωματική εργασία.

Επίσης ευχαριστώ τον αδερφό μου Κωνσταντινό Ηλεκτρολόγο Μηχανικό ΕΜΠ για τις πολύτιμες επισημάνσεις για την συγγραφή της διπλωματικής εργασίας.

Τέλος, θα ήθελα να αφιερώσω την εργασία αυτή στους γονείς μου και να τους ευχαριστήσω για τη στήριξή, υλική και ηθική, που μου προσέφεραν κατά την διάρκεια των σπουδών μου.
Περιεχόμενα

ΕΥΧΑΡΙΣΤΙΕΣ .. II
ΠΙΝΑΚΑΣ ΕΙΚΟΝΩΝ ... V
ΠΕΡΙΛΗΨΗ .. VII
ABSTRACT .. VIII
ΚΕΦΑΛΑΙΟ 1ο ... 9
ΥΔΡΟΔΕΛΤΡΙΚΑ .. 9
1.1 Εισαγωγή... 9
1.2 Ιστορική αναδρομή .. 10
1.3 Υδροδελτρικά εργοστάσια στην Ελλάδα .. 10
1.4 Λειτουργία υδροδελτρικών σταθμών .. 13
1.5 Κατηγοριοποίηση υδροδελτρικών σταθμών 13
1.6 Μικροί υδροδελτρικοί σταθμοί ... 16
1.7 Πλοενεκτήματα -Μειονεκτήματα μικρών υδροδελτρικών σταθμών 17
ΚΕΦΑΛΑΙΟ 2ο ... 19
ΕΠΙΜΕΡΟΥΣ ΜΕΡΟΙ ΜΥΗΣ ... 19
2.1 Φράγμα ... 19
2.1.1 Φράγματα βαρύτητας ... 19
2.1.2 Τοξωτά φράγματα .. 21
2.2 Ταμιευτήρας ... 22
2.3 Υπερχειλιστής .. 22
2.4 Στόμια εισόδου .. 24
2.5 Κανάλια Προσαγωγής ... 25
2.6 Δεξαμενή Φόρτισης ... 26
2.7 Αγωγός πτώσεως ... 26
2.8 Αυλάκια απαγωγής ... 29
2.9 Υδροστροβίλου ... 29
2.9.1 Υδροστροβίλου Δράσης .. 30
2.9.2 Υδροστροβίλου Αντίδρασης .. 31
2.9.3 Επιλογή κατάλληλου υδροστροβίλου 33
2.10 Γεννήτριες ... 35
2.11 Κιβώτια ταχυτήτων και πολλαπλασιαστές ταχύτητας 38
2.12 Υποσταθμός ανύψωσης τάσης .. 39
2.13 Εξοπλισμός ελέγχου .. 41
2.14 Πίνακας οργάνων και εξοπλισμός διανομής-προστασίας 42
2.15 Αυτόματος ελέγχου ... 43
ΚΕΦΑΛΑΙΟ 3ο ... 44
ΥΔΡΟΣΤΡΟΒΙΛΟΙ PELTON .. 44
3.1 Ιστορική αναδρομή ... 44
3.2 Αρχή λειτουργίας ... 45
3.3 Κύρια μέρη υδροστροβίλου Pelton .. 46
3.4 Πλεονεκτήματα-μειονεκτήματα υδροστροβίλου Pelton .. 49
3.5 Ισχύς υδροστροβίλου ... 49
3.6 Βαθμοί απόδοσης ... 51
3.7 Ειδική ταχύτητα υδροστροβίλων .. 53

ΚΕΦΑΛΑΙΟ 4ο ... 55
ΣΤΑΔΙΑ ΜΕΛΕΤΗΣ ΚΑΙ ΔΙΑΔΙΚΑΣΙΕΣ ΑΔΕΙΟΔΟΤΗΣΗΣ ΜΙΚΡΟΥ ΥΗΕ 55
4.1 Στάδια της μελέτης μικρού ΥΗΕ ... 55
4.1.1 Αναγνωριστική μελέτη μικρού ΥΗΕ ... 55
4.1.2 Προκαταρκτική μελέτη μικρού ΥΗΕ ... 56
4.1.3 Μελέτη εφαρμογής μικρού ΥΗΕ ... 58
4.2 Μελέτη Περιβαλλοντικών Επιπτώσεων .. 59
4.3 Μετρήσεις λειτουργίας και βαθμού απόδοσης ΜΥΗΕ ... 59
4.4 Διαδικασίες αδειοδότησης μικρού ΥΗΕ ... 60

ΚΕΦΑΛΑΙΟ 5ο ... 67
ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΜΥΗΕ .. 67
5.1 Εισαγωγή .. 67
5.2 Περιβαλλοντικές Επιπτώσεις ΜΥΗΕ .. 67
5.3 Τεχνικές οδηγίες και προδιαγραφές ... 72

ΚΕΦΑΛΑΙΟ 6ο ... 74
ΠΕΡΙΓΡΑΦΗ ΜΥΗΕ ΔΙΣΤΡΑΤΟ ΚΟΝΙΤΣΗΣ .. 74
6.1 Γεωγραφική θέση .. 74
6.1.1 Βροχομετρική πληροφορία ... 74
6.2 Περιγραφή έργου ... 76
6.2.1 Αγωγός προσαγωγής .. 78
6.2.2 Κτήριο ΜΥΗΕ ... 79
6.2.3 Υδροστροβίλος Σταθμού ... 80
6.2.4 Γεννήτρια ... 82
6.2.5 Ρυθμιστής στροφών ... 83
6.2.6 Πίνακας ελέγχου και τροφοδοσίας .. 84
6.2.7 Μετασχηματιστής ανύψωσης Τάσης .. 84
6.2.8 Πίνακες ΜΤ .. 85
6.2.9 Σύστημα γείωσης .. 85
6.2.10 Βοηθητικός Η/Μ εξοπλισμός ... 86

ΚΕΦΑΛΑΙΟ 7ο ... 87
ΣΥΜΠΕΡΑΣΜΑΤΑ ... 87
7.1 Βασικά συμπεράσματα ... 87
7.2 Θέματα για περαιτέρω διερεύνηση ... 88

ΒΙΒΛΙΟΓΡΑΦΙΑ ... 89

ΠΑΡΑΡΤΗΜΑ ... 93
ΠΙΝΑΚΑΣ ΕΙΚΟΝΩΝ

Εικόνα 1.1: Ο υδρολογικός κύκλος... 9
Εικόνα 1.2: Σταθμός φράγματος.. 14
Εικόνα 1.3: Σταθμός ποτάμιας στάθμης ... 14
Εικόνα 1.4: Σταθμός αντιλίων... 15
Εικόνα 1.5: Μικρός υδροπολεκτρικός σταθμός... 16
Εικόνα 2.1: Το χωμάτινο φράγμα Καστρακίου 19
Εικόνα 2.2: Το φράγμα λιθοσφάλης του Θυσαύρου.................................. 20
Εικόνα 2.3: Φράγμα σκυροδέματος του Λούρου....................................... 20
Εικόνα 2.4: Το αντηριδωτό φράγμα του Λάδωνα...................................... 21
Εικόνα 2.5: Το τοξωτό φράγμα του Ταυρωπού... 21
Εικόνα 2.6: Ταμιευτήρας φράγματος Λάδων.. 22
Εικόνα 2.7: Ενεργοποιήση υπερχειλιστών φράγματος Ταυρωπού.................... 23
Εικόνα 2.8: Κανάλι προσαγωγής.. 25
Εικόνα 2.9: Δεξαμενή φόρτισης ΜΥΗΕ .. 26
Εικόνα 2.10: Αγωγός πτώσης... 27
Εικόνα 2.11: Αυλάκι απαγωγής.. 29
Εικόνα 2.12: Υδροστροβίλος Pelton 2 δεσμίων....................................... 30
Εικόνα 2.13: Υδροστροβίλος εγκάρσιας ροής.. 31
Εικόνα 2.14: Υδροστροβίλος Turgo.. 31
Εικόνα 2.15: Υδροστροβίλος Francis... 32
Εικόνα 2.16: Υδροστροβίλος Kaplan... 33
Εικόνα 2.17: Επιλογή υδροστροβίλου βάσει ύψους υδατόπτωσης-παροχής........ 34
Εικόνα 2.18: Σύγχρονη γεννήτρια.. 35
Εικόνα 2.19: Ασύγχρονη γεννήτρια.. 37
Εικόνα 2.20: Μετασχηματιστής ισχύος ελαίου.. 40
Εικόνα 2.21: Ηλεκτρονικός ρυθμιστής στροφών...................................... 42
Εικόνα 2.22: Ηλεκτρικός πίνακας ΜΗΥΕ .. 42
Εικόνα 3.1: Προτότυπος υδροστροβίλος Pelton....................................... 44
Εικόνα 3.2: Σχηματική μορφή σκαφιδίων υδροστροβίλου Pelton.................. 47
Εικόνα 3.3: Υδροστροβίλος Pelton με οριζόντιο δρομέα............................ 47
Εικόνα 3.4: Υδροστροβίλος Pelton με κατακόρυφο δρομέα....................... 48
Εικόνα 3.5: Καμπύλες απόδοσης διαφόρων τύπων υδροστροβίλων.............. 52
Εικόνα 5.1: Θεμελίωση του αγωγού προσαγωγής................................. 68
Εικόνα 5.2: Η αλλοιώση περιοχής από την κατασκευή φράγματος.............. 69
Εικόνα 5.3: Ισχυούδρομος... 70
Εικόνα 6.1: Χάρτης της ευρύτερης περιοχής... 74
Εικόνα 6.2: Γράφημα μέσων τιμών βροχόπτωσης των τελευταίων 5 ετών........ 75
Εικόνα 6.3: Σχηματική απεικόνιση σημείων ΜΥΗΕ Δίστρατου...................... 76
Εικόνα 6.4: Υπερπήδητο φράγμα.. 77
Εικόνα 6.5: Αγωγός προσαγωγής.. 77
Εικόνα 6.6: Αγωγός Απαγωγής.. 78
Εικόνα 6.7: Εργασίες θεμελίωσης αγωγού προσαγωγής ... 79
Εικόνα 6.8: Κτήριο ΜΥΗΕ Δίστρατου .. 79
Εικόνα 6.9: Εγκατεστημένος υδροστροβίλος Pelton .. 80
Εικόνα 6.10: Σύγχρονη τριφασική γεννήτρια ... 83
Εικόνα 6.11: Πίνακας ελέγχου και τροφοδοσία .. 84
Εικόνα 6.12: Μετασχηματιστής ανύψωσης ΜΥΗΕ ... 85
Εικόνα Π.1: Εξωτερική όψη κτηρίου ΜΥΗΕ ... 93
Εικόνα Π.2: Εσωτερική όψη του κτηρίου ΜΥΗΕ ... 93
Εικόνα Π.3: Εξωτερική όψη του κτηρίου ΜΥΗΕ .. 94
Εικόνα Π.4: Εσωτερική όψη κτηρίου ΜΥΗΕ ... 94
Εικόνα Π.5: Σκαφίδιο στροφείου υδροστροβίλου Pelton ... 95
Εικόνα Π.6: Στροφείο υδροστροβίλου Pelton ... 95
Εικόνα Π.7: Υδροστροβίλος Pelton οριζόντιου άξονα 3 ακροφυσίων 96
Εικόνα Π.8: Υδροστροβίλος Pelton κάθετου άξονα 4 ακροφυσίων 96
ΠΕΡΙΛΗΨΗ

Σκοπός της παρούσας Διπλωματικής Εργασίας είναι η μελέτη υδροηλεκτρικής εγκατάστασης μικρής ισχύος με υδροστροβίλους Pelton.

Το πρώτο κεφάλαιο ξεκινάει με μία εισαγωγή παρουσιάζοντας τον υδρολογικό κύκλο του νερού και στη συνέχεια γίνεται μια ιστορική αναδρομή στην αρχή της χρήσης της υδροηλεκτρικής ενέργειας τόσο στην Ελλάδα όσο και σε άλλες χώρες. Μετέπειτα παρουσιάζονται αναλυτικά στοιχεία λειτουργίας και κατασκευής για τα μεγάλα και μικρά υδροηλεκτρικά που λειτουργούν στην Ελλάδα. Επίσης παρουσιάζεται η αρχή λειτουργίας ενός υδροηλεκτρικού σταθμού και αναλύονται οι κατηγορίες που διακρίνονται ανάλογα με το τύπο του φράγματος, του δυναμικού και του ύψους πτώσης. Στην συνέχεια δίνεται ο ορισμός και τα μέρη από τα οποία αποτελείται ένα μικρό υδροηλεκτρικό έργο. Τέλος, παρουσιάζονται τα πλεονεκτήματα και τα μειονεκτήματα των μικρών υδροηλεκτρικών σταθμών.

Στο δεύτερο κεφάλαιο παρουσιάζονται και αναλύονται τα επιμέρους μέρη ενός υδροηλεκτρικού τα οποία διακρίνονται σε δομικά έργα όπως είναι το φράγμα, ο ταμιευτής, ο υπερχειλιστής, τα στόμια εισόδου, τα κανάλια, οι αγωγοί πτώσης και τα κανάλια παγωγής και σε ηλεκτρομηχανολογικά έργα όπως είναι οι υδροστροβίλοι, οι γεννήτριες, ο μετασχηματιστής ισχύος καθώς και τα συστήματα ελέγχου που διασφαλίζουν την αξιόπιστη και ασφαλή λειτουργία του υδροηλεκτρικού σταθμού.

Στην αρχή του τρίτου κεφαλαίου γίνεται μια ιστορική αναδρομή στον Lester A. Pelton, ο οποίος ανακάλυψε τον υδροστρόβιλο που ήταν κατάλληλος για μεγάλα ύψη πτώσης και για χαμηλές παροχές νερού. Επίσης, παρουσιάζεται η αρχή λειτουργίας και αναλύονται τα κύρια μέρη από τα οποία αποτελείται ένας υδροστροβίλος Pelton. Στην συνέχεια αναφέρονται τα πλεονεκτήματα και τα μειονεκτήματα που παρουσιάζονται και αναλύονται οι τρεις καθοριστικοί παράγοντες για την επιλογή ενός υδροστροβίλου που είναι η μηχανική ισχύς, ο βαθμός απόδοσης και η ειδική ταχύτητα περιστροφής.

Στο τέταρτο κεφάλαιο παρουσιάζονται και αναλύονται τα στάδια μιας υδροηλεκτρικής μελέτης και οι διαδικασίες που ακολουθούνται για την αδειοδότηση ενός μικρού υδροηλεκτρικού εργοστασίου.

Στο πέμπτο κεφάλαιο γίνεται μία αναφορά στις περιβαλλοντικές επιπτώσεις που μπορούν να προκύψουν κατά την κατασκευή και λειτουργία ενός μικρού υδροηλεκτρικού σταθμού και στη συνέχεια αναφέρονται τεχνικές οδηγίες και προδιαγραφές οι οποίες εφαρμόστηκαν θα εξαλείψουν τα ελάχιστα της περιβαλλοντικώςς επιπτώσεως.

Στο έκδομο περιγράφεται το ΜΥΗΕ του Δίστρατου στην περιοχή της Κόνιτσας και υπολογίζονται οι διαστάσεις των μερών από τα οποία αποτελείται ο υδροστροβίλος Pelton και προσδιορίζονται οι κρίσιμοι παράγοντες για την επιλογή του.

Στο έβδομο κεφάλαιο συνοψίζουμε τα κυριότερα συμπεράσματα που προέκυψαν κατά την εκπόνηση της παρούσας εργασίας και προτείνουμε σχετικά θέματα που χρήζουν περαιτέρω διερεύνησης.
ABSTRACT

The main objective of this diploma thesis is the study of low power hydroelectric facilities equipped with Pelton hydro turbines. The first chapter starts with an introduction on the hydrologic cycle and provides a chronology related to the origins of hydroelectric energy’s use in Greece as well as in other countries. In the sequel, we describe in detail the most important operational and manufacturing features of large and small – scale hydroelectric power stations residing in Greece. Following that, the operating principles of a hydroelectric station are mentioned along with an in – depth analysis of the discrete categories of the available stations classified by the type of the dam, the dynamic and the height of the falling water. Next, we report on the distinctive characteristics and parts of a small – scale hydroelectric power station and present their main benefits and disadvantages.

In the second chapter, we give a thorough account of the individual parts of a hydroelectric project categorizing them in structural projects including the dam, the reservoir, the flooding mechanisms, the inlet gates, the channels, the penstocks and the outlet pipes and in hydro mechanical projects such as the hydro turbines, the generators, the transformers and the control systems that ensure the reliable and secure operation of the hydro power station.

The third chapter begins with a historical reference to the Lester A. Pelton, who was the inventor of the Pelton hydro turbine, which is proper for great heights and low water supply. We then present the operating principle of this type of turbine and analyze its main parts. We also mention the major advantages and disadvantages of this turbine and describe the three key factors, namely turbine’s mechanical power, its efficiency and its specific speed used in the process of selecting the optimal type of turbine.

The fourth chapter includes the main stages of a hydroelectric study and the procedures required for the licensing of a small – scale hydropower station.

In the fifth chapter, we describe the environmental impacts caused by the construction and the operation of a small – scale hydropower station. The conclusion of this chapter includes technical instructions and specifications that if applied they can eliminate the environmental effects attributed to hydroelectric power facilities.

In the sixth chapter, we describe the operation of Distrato’s small-scale hydroelectric power station vesided in the region of Konitsa in, northwestern Greece. We quantify the dimensions of a Pelton turbines critical parts as well as the crucial parameters for selecting the suitable type of turbine.

In the final chapter, we summarize the most noteworthy conclusions derived from the current thesis and we suggest relevant subjects that need a more in-depth study.
1.1 Εισαγωγή

Η Υδροηλεκτρική ενέργεια βασίζεται στον υδρολογικό κύκλο του νερού το οποίο φτάνει στην επιφάνεια της γης είτε μέσω της βροχόπτωσης είτε μέσω του χιονιού που λιώνει. Ένα μέρος του νερού εξατμίζεται ενώ ένα μεγαλύτερο εισχωρεί στο έδαφος η αποθηκεύεται σε λίμνες, σε ταμιευτήρες ή στη θάλασσα όπου η εξάτμιση είναι συνεχής.

![Η υγρασία που δημιουργείται από την εξάτμιση του νερού εισέρχεται μέσω του εδάφους και καταλήγει σε υδατικά συστήματα μέσω πηγών ή υπόγειων ρειμάτων. Σε περιόδους όμως ξηρασίας το νερό μπορεί να κινηθεί προς την επιφάνεια του εδάφους με αποτέλεσμα να επιστρέψει στην ατμόσφαιρα μέσω της εξάτμισης. Οι υδρατμοί μέσω της εξάτμισης κυκλοφορούν, συμπυκνώνονται στα σύννεφα και δημιουργούν την βροχή η οποία επιστρέφει το νερό στη γη. Ετσι κλείνει ο κύκλος του νερού και μας αποδεικνύει ότι το νερό είναι μια ανανεώσιμη πηγή. Το όφελος αυτό το εκμεταλλεύονται υδροηλεκτρικά έργα τα οποία συμμετέχουν στην παραγωγή ηλεκτρικής ενέργειας από ανανεώσιμες πηγές ενέργειας τόσο σε ευρωπαϊκό όσο και σε παγκόσμιο επίπεδο.[1]
1.2 Ιστορική αναδρομή

Σύμφωνα με ιστορικά στοιχεία η υδροϊσχύς αξιοποιήθηκε πριν από 5000 χρόνια ενώ η πρώτη αναφορά στην Αρχαία Ελλάδα γίνεται κατά τον 2ο αιώνα π.Χ από τον Αντίπατρο τον Θεσσαλονίκεα. Μεταγενέστερα στην Ρωμαϊκή Αυτοκρατορία είχαν κατασκευαστεί δεκάδες νερόμυλοι. Κατά τον 1ο αιώνα μ.Χ. ο Βιτρούβιος είχε περιγράψει το σχεδιασμό υδρόμυλων με την ισχύ των μεγαλύτερων εξ αυτών να εκτιμάται στα 15 kW. Ως προς τα κατασκευαστικά χαρακτηριστικά των πρώτων υδροτροχών αξίζει να αναφέρουμε τη χρήση κατακόρυφου άξονα που αντικαταστάθηκε μετέπειτα από τον οριζόντιο άξονα. Μεταξύ των βασικών εφαρμογών της υδροϊσχύος για αιώνες σε χώρες του Δυτικής Ευρώπης και μέχρι τα μέσα του 20ού αιώνα στην Ελλάδα περιλαμβάνονται: η άλεση δημητριακών, το κόψιμο ξύλων, η ανύψωση βαρών και άλλες βιομηχανικές εφαρμογές που καταδεικνύουν τη σημαντική συμβολή της υδατικής ισχύος στην οικονομική ανάπτυξη των χωρών που την αξιοποίησαν.

Κατά τον μεσαίωνα και μέχρι τα τέλη του 18ου αιώνα η υδροϊσχύς αποτελούσε την κύρια πηγή μηχανικής ενέργειας. Με το πέρασμα των αιώνων όμως διατυπώθηκαν διάφοροι προβληματισμοί για τη δυνατότητα δημιουργίας υδροτροχών βέλτιστης απόδοσης καθώς και για τον τρόπο πρόσπτωσης του νερού στα πτερύγια του υδροτροχού. Στην περίοδο μεταξύ 1650 και 1800 πραγματοποιήθηκαν διάφορες δοκιμές και αποδείχτηκε ότι οι υδροτροχοί επιτυγχάνουν την καλύτερη απόδοση όταν το νερό προσπίπτει στην άνω πλευρά των πτερυγίων. Ωστόσο, στο τέλος εκείνης της περιόδου ανακαλύφθηκε η ατμοκίνηση με συνέπεια η υδροϊσχύς να περιέλθει σε δεύτερη μοίρα.

Τα πρώτα υδροηλεκτρικά εργοστάσια, τα οποία εκμεταλλεύονταν τη ροή μικρών ποταμών, κατασκευάστηκαν το 1881 στο Surrey της Αγγλίας και το 1882 στο Wisconsin των Η.Π.Α. Το 1891 η ηλεκτρική ενέργεια που παράγονταν από τα υδροηλεκτρικά στις Η.Π.Α μπορούσε να εξυπηρετήσει οικίες και βιομηχανίες σε αποστάσεις μεγαλύτερες των 150 km. Η υδροηλεκτρική ενέργεια είναι πλέον αρκετά διαδεδομένη και παράγει ηλεκτρικό περισσότερα από 100 χρόνια με αξιόπιστο τρόπο και με ανταγωνιστικό κόστος σε σχέση με άλλες μορφές ενέργειας. Η δυνατότητα διάθεσης της υδροηλεκτρικής ενέργειας είναι από μερικές εκατοντάδες Watt μέχρι πάνω από 10 GW ενώ σε πολλές χώρες όπου η μορφολογία του εδάφους είναι πιο ευνοϊκή η παραγωγή υδροηλεκτρικής ενέργειας υπερβαίνει το 80% της συνολικής ενεργειακής παραγωγής.[2]

1.3 Υδροηλεκτρική εργοστάσια στην Ελλάδα

Στο Ελλαδικό χώρο λόγω της μορφολογίας του εδάφους και των υψηλών βροχοπτώσεων σε ορισμένες περιοχές η εκμετάλλευση των υδάτινων πόρων για παραγωγή ηλεκτρικής ενέργειας είναι πολύ υψηλή. Σύμφωνα και με τα στοιχεία που παρατίθενται στους παρακάτω πίνακες η εγκατεστημένη ισχύς από τους μεγάλους υδροηλεκτρικούς σταθμούς ανέρχεται σε 3017,7 MW
και από τους μικρούς σε 69,35 MW με τη συνολική εγκατεστημένη ισχύ να ανέρχεται σε 3087 MW που αντιστοιχεί σε μέση ετήσια παραγωγή ενέργειας της τάξεως των 5000 GWh.

Πίνακας 1-1: Μεγάλα υδροηλεκτρικά εργοστάσια στην Ελλάδας,[3]

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Ονομασία ΥΗΣ</th>
<th>Περιοχή</th>
<th>Έτος</th>
<th>Ισχύς (MW)</th>
<th>Μέση ετήσια παραγωγή σε GWh</th>
<th>Τύπος Υ/Σ (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Κρεμαστών</td>
<td>Ν. Αιτωλ/νίας</td>
<td>1966</td>
<td>437,2</td>
<td>848</td>
<td>4X109,3 Francis</td>
</tr>
<tr>
<td>2</td>
<td>Καστρακίου</td>
<td>Ν. Αιτωλ/νίας</td>
<td>1969</td>
<td>320</td>
<td>598</td>
<td>4X80 Francis</td>
</tr>
<tr>
<td>3</td>
<td>Στράτος I</td>
<td>Ν. Αιτωλ/νίας</td>
<td>1989</td>
<td>150</td>
<td>225</td>
<td>1X150 Francis</td>
</tr>
<tr>
<td>4</td>
<td>Πολυφύτου</td>
<td>Ν.Κοζάνης</td>
<td>1974/7</td>
<td>375</td>
<td>420</td>
<td>3X125 Francis</td>
</tr>
<tr>
<td>5</td>
<td>Σφηκιάς</td>
<td>Ν.Ημαθίας</td>
<td>1985/8</td>
<td>315</td>
<td>380</td>
<td>3X105 Francis</td>
</tr>
<tr>
<td>6</td>
<td>Ασωμάτων</td>
<td>Ν.Ημαθίας</td>
<td>1985</td>
<td>108</td>
<td>130</td>
<td>2X54 Francis</td>
</tr>
<tr>
<td>7</td>
<td>Πηγών Αώου</td>
<td>Ν.Ιωαννίνων</td>
<td>1990/1</td>
<td>210</td>
<td>165</td>
<td>2X105 Pelton</td>
</tr>
<tr>
<td>8</td>
<td>Πουρνάρι I</td>
<td>Ν.Αρτας</td>
<td>1981</td>
<td>300</td>
<td>235</td>
<td>3X100 Francis</td>
</tr>
<tr>
<td>9</td>
<td>Πουρνάρι II</td>
<td>Ν.Αρτας</td>
<td>1998/9</td>
<td>33,6</td>
<td>45</td>
<td>2X16 bulb & 1X16 S type</td>
</tr>
<tr>
<td>10</td>
<td>Θησαυρού</td>
<td>Ν.Δράμας</td>
<td>1998</td>
<td>384</td>
<td>440</td>
<td>3X128 Francis</td>
</tr>
<tr>
<td>11</td>
<td>Πλατανόβρυσης</td>
<td>Ν. Δράμας</td>
<td>1989</td>
<td>116</td>
<td>240</td>
<td>2X58 Francis</td>
</tr>
<tr>
<td>12</td>
<td>Λάδωνα</td>
<td>Ν. Αρκαδίας</td>
<td>1955</td>
<td>70</td>
<td>260</td>
<td>2X35 Francis</td>
</tr>
<tr>
<td>13</td>
<td>Ν. Πλαστήρα</td>
<td>Ν. Καρδίτσας</td>
<td>1962</td>
<td>129,9</td>
<td>198</td>
<td>3X43,3 Pelton</td>
</tr>
<tr>
<td>14</td>
<td>Αγρα</td>
<td>Ν. Πέλλας</td>
<td>1954</td>
<td>50</td>
<td>35</td>
<td>2X25 Francis</td>
</tr>
<tr>
<td>15</td>
<td>Εδεσσαίου</td>
<td>Ν. Πέλλας</td>
<td>1970</td>
<td>19</td>
<td>25</td>
<td>1X19 Francis</td>
</tr>
</tbody>
</table>
Πίνακας 1-2: Μικρά νεροηλεκτρικά εργοστάσια στην Ελλάδα.[4]

<table>
<thead>
<tr>
<th>Α/Α</th>
<th>Ονομασία ΜΥΗΣ</th>
<th>Περιοχή</th>
<th>Έτος</th>
<th>Ισχύς (MW)</th>
<th>Μέση ετήσια παραγωγή σε GWh</th>
<th>Τύπος Υ/Σ (MW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>Λούρου</td>
<td>Ν.Πρέβεζας</td>
<td>1954</td>
<td>10,3</td>
<td>50</td>
<td>2X2,5 & 1X5,3 Francis</td>
</tr>
<tr>
<td>2</td>
<td>Γκιώνας</td>
<td>Ν.Φωκίδας</td>
<td>1988</td>
<td>8,5</td>
<td>40</td>
<td>1X8,5 Francis</td>
</tr>
<tr>
<td>3</td>
<td>Γλαύκος</td>
<td>Ν. Αχαίας</td>
<td>1926</td>
<td>3,7</td>
<td>11,4</td>
<td>2X1,4 Pelton & 1X2,29 Francis</td>
</tr>
<tr>
<td>4</td>
<td>Βέρμιου</td>
<td>Ν. Ημαθίας</td>
<td>1936</td>
<td>1,5</td>
<td>6</td>
<td>2X0,75 Francis</td>
</tr>
<tr>
<td>5</td>
<td>Στράτου II</td>
<td>Ν. Λατολύκια</td>
<td>1989</td>
<td>6,30</td>
<td>12</td>
<td>2X3,15 Kaplan S</td>
</tr>
<tr>
<td>6</td>
<td>Αγ.Βαρβάρα</td>
<td>Ν. Ημαθίας</td>
<td>2008</td>
<td>0,92</td>
<td>4</td>
<td>1X0,92 Kaplan S</td>
</tr>
<tr>
<td>7</td>
<td>Αγ. Ιωάννη</td>
<td>Ν. Σερρών</td>
<td>1931</td>
<td>0,70</td>
<td>0,71</td>
<td>2X0,35 Francis</td>
</tr>
<tr>
<td>8</td>
<td>Αλατόπετρα</td>
<td>Ν. Γρεβενών</td>
<td>2013</td>
<td>2,43</td>
<td>14,5</td>
<td>1X1,22 Francis & 1X1,21 Pelton</td>
</tr>
<tr>
<td>9</td>
<td>Αλμυρός</td>
<td>Ν. Χανίων</td>
<td>1954</td>
<td>0,30</td>
<td>1,25</td>
<td>1X0,30 Francis</td>
</tr>
<tr>
<td>10</td>
<td>Βορεινό</td>
<td>Ν. Έδεσσα</td>
<td>2007</td>
<td>2,01</td>
<td>20</td>
<td>1X2,01 Pelton</td>
</tr>
<tr>
<td>11</td>
<td>Γιτάνη</td>
<td>Ν. Ηγουμενίτσα</td>
<td>2006</td>
<td>2,06</td>
<td>17,5</td>
<td>2X2,1 Kaplan S</td>
</tr>
<tr>
<td>12</td>
<td>Ελεούσα</td>
<td>Ν. Θεσ/νίκης</td>
<td>2008</td>
<td>3,23</td>
<td>30</td>
<td>2X3,3 Kaplan S</td>
</tr>
<tr>
<td>13</td>
<td>Ιλαρίωνα</td>
<td>Ν. Κοζάνης</td>
<td>2014</td>
<td>4,20</td>
<td>22</td>
<td>1X4,20 Francis</td>
</tr>
<tr>
<td>14</td>
<td>Μακροχώρι</td>
<td>Ν. Ημαθίας</td>
<td>1992</td>
<td>10,80</td>
<td>30</td>
<td>3X3,6 Kaplan S</td>
</tr>
<tr>
<td>15</td>
<td>Οινούσα</td>
<td>Ν. Σερρών</td>
<td>2004</td>
<td>1,50</td>
<td>3,8</td>
<td>1X1,50 Pelton</td>
</tr>
<tr>
<td>16</td>
<td>Παπαδιά</td>
<td>Ν. Φλόρινας</td>
<td>2010</td>
<td>0,50</td>
<td>2,3</td>
<td>1X0,50 Pelton</td>
</tr>
<tr>
<td>17</td>
<td>Σμόκοβο</td>
<td>Ν.Καρδίτσα</td>
<td>2008</td>
<td>10,40</td>
<td>10,7</td>
<td>1X7,1 & 1X3,3 Francis</td>
</tr>
</tbody>
</table>
Η συνολική εγκατεστημένη ισχύς των 3087 MW καλύπτει το 28% της συνολικής εγκατεστημένης ισχύος των συμβατικών σταθμών η οποία ανέρχεται σε 11.079 MW και η μέση ετήσια υδροηλεκτρική παραγωγή ανάλογα με τη ποσότητα των υδάτινων πόρων του έτους δύναται να καλύψει το 10% παραγωγής της ΔΕΗ.[3]

1.4 Λειτουργία υδροηλεκτρικών σταθμών

Η αρχή λειτουργίας των υδροηλεκτρικών μονάδων στηρίζεται στην κίνηση του νερού που περιστρέφει έναν υδροστρόβιλο ο οποίος θέτει σε λειτουργία μια γεννήτρια. Οι υδροηλεκτρικές μονάδες διαθέτουν σε ανώτερο υψό μια δεξαμενή επικολόνωσης η οποία συγκρατεί το νερό και δημιουργεί μια δεξαμενή αποθήκευσης νερού (ταμιευτήρας). Στην συνέχεια το νερό από τη δεξαμενή αποθήκευσης (ταμιευτήρας) εισέρχεται σε ένα αγωγό (αγωγό κατάθλιψης) και εξέρχεται από αυτόν με μεγάλη πίεση προσκρούοντας στα πετρώματα ενός υδροστρόβιλου προκαλώντας την περιστροφή του άξονα του. Συνδεδεμένος με τον άξονα του υδροστρόβιλου είναι και ο άξονας μιας γεννήτριας με αποτέλεσμα να περιστροφή δημιουργάται στα άκρα της γεννήτριας εναλλασσόμενο στη σειρά μείγμα. Το παραγόμενο εναλλασσόμενο στη σειρά μείγμα ανυψώνεται με τη βοήθεια μετασχηματιστή σε ρεύμα υψηλής τάσης και μέσω των γραμμών μεταφοράς αρχίζει η διανομή του.

Oi περισσότερες υδροηλεκτρικές μονάδες λειτουργούν κατά αυτόν τον τρόπο. Υπάρχουν όμως και μονάδες οι οποίες διαθέτουν δύο δεξαμενές αποθήκευσης. Την ανώτερη δεξαμενή η οποία συγκεντρώνει το νερό που συγκρατεί το φράγμα και την κατώτερη δεξαμενή που συγκεντρώνει το νερό που διαφέυγει από τους υδροστροβίλους αντί να διοχετεύει ξανά στο ποτάμι. Στην συνέχεια ένας υδροστρόβιλος που λειτουργεί σαν αντλία από την κατώτερη δεξαμενή διοχετεύει το νερό στην ανώτερη δεξαμενή με αποτέλεσμα να υπάρχει περισσότερη ποσότητα νερού για χρήση από το σταθμό παραγωγής σε περιόδους αιχμής.[5]

1.5 Κατηγοριοποίηση υδροηλεκτρικών σταθμών

i. Ανάλογα με τον τύπο φράγματος

• Σταθμοί φράγματος: Αποτελούνται από ταμιευτήρα, ο οποίος χρησιμεύει για αποθήκευση επαρκούς ποσότητας νερού, και από τον σταθμό παραγωγής (στον οποίο είναι εγκατεστημένοι οι υδροστροβίλοι) ο οποίος και βρίσκεται σε κατώτερο σημείο από τον ταμιευτήρα. Το νερό που είναι αποθηκευμένο στον ταμιευτήρα εισέρχεται σε σωλήνες (καταθλιπτικοί σωλήνες) και οδηγείται στους υδροστροβίλους του σταθμού παραγωγής.[6]
Εικόνα 1.2: Σταθμός φράγματος

- Σταθμοί ποτάμιας στάθμης: Δεν απαιτείται ταμιευτήρας, το νερό οδηγείται κατά τη φυσική ροή του ποταμιού σε έναν υδραγωγό ο οποίος στην συνέχεια θα τροφοδοτήσει με νερό τον υδροστρόβιλο. Οι υδροστρόβιλοι που χρησιμοποιούνται σχεδιάζονται κατάλληλα ώστε να διαχειρίζονται μεγάλες ποσότητες νερού με χαμηλές πιέσεις.[6]

Εικόνα 1.3: Σταθμός ποτάμιας στάθμης

- Σταθμοί αντλιών: Αποτελούνται από δύο ταμιευτήρες, τον ανάντι ταμιευτήρα και τον κατάντι ταμιευτήρα κάτω στάθμης, την αντλία, τον στρόβιλο και τη γεννήτρια. Συνήθως
η αντλία και ο στρόβιλος είναι ενσωματωμένοι σε μια υδρομηχανή, τον αντλιοστρόβιλο, ο οποίος ανάλογα με τη φορά περιστροφής του αντλεί ή κινείται από το νερό. Σε περιόδους αυξημένης ζήτησης του φορτίου το νερό από τον ανάντι ταμιευτήρα μέσω των καταβλητικών συλλήψεων εισέρχεται στους υδροστρόβιλους και παράγεται ηλεκτρικό ρεύμα, στη συνέχεια το νερό καταλήγει στον κατάντι ταμιευτήρα. Σε περιόδους χαμηλής ζήτησης της ενέργειας (π.χ νύχτα) μέρος του νερού που είναι αποθηκευμένο στον κατάντι ταμιευτήρα αντλείται και οδηγείται στον ανάντι ταμιευτήρα.[6]

Εικόνα 1.4: Σταθμός αντλιών

ii. Ανάλογα με το δυναμικό

Πίνακας 1-3: Κατηγοριοποίηση σταθμού ανάλογα με το δυναμικό

<table>
<thead>
<tr>
<th>Τύπος Σταθμού</th>
<th>Εύρος Ισχύος (KW)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μικροσταθμόι</td>
<td>≤100</td>
</tr>
<tr>
<td>Μικρού</td>
<td>100-1000</td>
</tr>
<tr>
<td>Μέσου</td>
<td>1000-10000</td>
</tr>
<tr>
<td>Μεγάλου</td>
<td>>10000</td>
</tr>
</tbody>
</table>

iii. Ανάλογα με το ύψος πτώσης

Πίνακας 1-4: Κατηγοριοποίηση σταθμού ανάλογα με το ύψος πτώσης

<table>
<thead>
<tr>
<th>Τύπος Σταθμού</th>
<th>Εύρος Υψούς (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Μικρής</td>
<td>H<15</td>
</tr>
<tr>
<td>Μέσης</td>
<td>15<H<50</td>
</tr>
<tr>
<td>Μεγάλης</td>
<td>H>50</td>
</tr>
</tbody>
</table>
Τα υδροηλεκτρικά εργοστάσια μπορούν να δουλεύουν 365 μέρες το χρόνο επί 24 ώρες τη μέρα με τον συνολικό βαθμό απόδοσης, λαμβάνοντας και τις απώλειες του αγωγού τροφοδοσίας, να κυμαίνεται από 75% έως 85%.[7]

1.6 Μικροί υδροηλεκτρικοί σταθμοί

Ο ορισμός των Μικρών Υδροηλεκτρικών Συστημάτων διαφέρει από χώρα σε χώρα. Στην Ελλάδα σύμφωνα με τη νομοθεσία (N.1559/1985 και N2244/1994) ως μικροί υδροηλεκτρικοί σταθμοί χαρακτηρίζονται οι σταθμοί με ισχύ μικρότερη των 10 MW ενώ με το καινούργιο νόμο 3851/2010 το όριο ανέβηκε στα 15MW.

Ένα μικρό υδροηλεκτρικό εργοστάσιο περιλαμβάνει:

- Ένα απλό Φράγμα-υδατοφράχτη.
- Το σύστημα υδροληψίας.
- Το σύστημα προσαγωγής (ανοικτός ή κλειστός αγωγός).
- Τη δεξαμενή φόρτισης.
- Τον καταθλιπτικό αγωγό.
- Τον κυρίο σταθμό παραγωγής (που περιλαμβάνει το υδροστρόβιλο).
- Μια ηλεκτρογεννήτρια.
- Ένα κατάλληλο σύστημα ρυθμίσεως-ελέγχου-προστασίας-παρακολούθησης.
- Τη διώροφη φυγής από το σταθμό παραγωγής.
- Τον υποσταθμό ανύψωσης της τάσης με τις γραμμές μεταφοράς.

Εικόνα 1.5: Μικρός υδροηλεκτρικός σταθμός

Συγκεκριμένα το νερό του ποταμού ή του χειμάρρου ξεκινώντας από την αρχική δεξαμενή ή τον μικρό ταμιευτήρα μέσω ανοικτών ή κλειστών καναλιών εισέρχεται στον αγωγό υψηλής πίεσης.
καταθλιπτικό αγωγό) και στη συνέχεια στον υδροστρόβιλο. Εξερχόμενο το νερό από τον υδροστρόβιλο καταλήγει στο κανάλι απαγωγής και στη συνέχεια στη φυσική ροή του ποταμού.

Η κινητική ενέργεια που αποκτά το νερό κατά την πτώση μπορεί να μετατραπεί σε μηχανική ενέργεια και στη συνέχεια σε ηλεκτρική στους σταθμούς παραγωγής ηλεκτρικού ρεύματος. Η ονομαστική εγκατεστημένη ισχύ ενός μικρού υδροηλεκτρικού εργοστασίου καθώς και η παραγόμενη ηλεκτρική ενέργεια είναι ανάλογη της παροχής του νερού που περνάει μέσα στον υδροστρόβιλο και της υψομετρικής διαφοράς που καλύπτει το νερό εισερχόμενο στον καταθλιπτικό αγωγό έως τον υδροστρόβιλο.[8]

1.7 Πλεονεκτήματα -Μειονεκτήματα μικρών υδροηλεκτρικών σταθμών

Η απόδοση και η αξιοπιστία που παρουσιάζουν τα μικρά υδροηλεκτρικά τα καθιστούν αποδοτικότερα για την παραγωγή ηλεκτρικής ενέργειας σε σύγκριση με τις υπόλοιπες ανανεώσιμες μορφές ενέργειας. Ειδικότερα τα πλεονεκτήματα των ΜΥΘΕ συνοψίζονται ως εξής:

- Παρουσιάζουν μεγάλη απόδοση (70-90%) σε σύγκριση με άλλες ανανεώσιμες μορφές ενέργειας.
- Έχουν υψηλό συντελεστή δυναμικού (συνήθως>50%) σε σύγκριση με (10%) τα ηλιακά και την αιολική ενέργεια (30%).
- Η εκτίμηση της παραγόμενης ικανότητας είναι ευκολότερη διότι είναι ανάλογη με τον ετήσιο ρυθμό βροχόπτωσης.
- Ο ρυθμός μεταβλητότητας είναι χαμηλός, καθώς η παραγόμενη ισχύς μεταβάλλεται μόνο σταδιακά από μέρα σε μέρα (όχι από λεπτό σε λεπτό).
- Η ετήσια παραγωγή υφίσταται μεταβολές που σχετίζονται με την υδραυλική του έτους, δηλαδή την ποσότητα των βροχοπτώσεων και χιονοπτώσεων κατά τη διάρκεια του έτους.

Εκτός από τα πλεονεκτήματα τα μικρά υδροηλεκτρικά εργοστάσια παρουσιάζουν και κάποια μειονεκτήματα όπως:

- Οι μελέτες για την συλλογή-επεξεργασία υδρολογικών και γεωλογικών στοιχείων είναι χρονοβόρες λαμβάνοντας υπόψη ότι η κατασκευή των σταθμών διαρκεί 1-2 χρόνια.
- Η ετήσια παραγωγή υφίσταται μεταβολές που σχετίζονται με την υδραυλικότητα του έτους, δηλαδή την ποσότητα των βροχοπτώσεων και χιονοπτώσεων κατά τη διάρκεια του έτους.
• Απαιτούν μεγάλα χρηματοδοτικά κεφάλαια, διότι το κόστος κατασκευής είναι πολύ υψηλό (της τάξεως 2000-4000 €/kW).

• Η κατασκευή του έργου γίνεται σε περιοχές όπου υπάρχει επαρκής πλήθος υδατοπτώσεων και το έδαφος είναι ευνοϊκό για την κατασκευή μικρού φράγματος. Συνήθως οι περιοχές αυτές είναι μακριά από το δίκτυο και απαιτούνται πρόσθετα έργα για την μεταφορά του παραγόμενου ηλεκτρικού ρεύματος, με συνέπεια την αύξηση του κόστους κατασκευής.[10]
ΚΕΦΑΛΑΙΟ 2ο
ΕΠΙΜΕΡΟΥΣ ΜΕΡΟΙ ΜΥΗΣ

2.1 Φράγμα

Το φράγμα ενός μικρού υδροηλεκτρικού είναι η κατασκευή που παρεμβάλλεται στη φυσική ροή ενός υδατορεύματος, με σκοπό τη συγκράτησή του νερού και τη δημιουργία ταμιευτήρα που θα παράσχει την απαιτούμενη παροχή νερού στο σύστημα υδροληψίας για τη σωστή λειτουργία του υδροηλεκτρικού σταθμού.

Τα φράγματα διακρίνονται ανάλογα με το υλικό κατασκευής τους (γαιώδη, λίθων, σκυροδέματος) και ανάλογα με τις δυνάμεις που ασκεί το νερό σε αυτά (φράγματα βαρύτητας και τα τοξωτά φράγματα).[11]

2.1.1 Φράγματα βαρύτητας

Χωμάτινα φράγματα

Τα χωμάτινα φράγματα είναι από τα πρώτα που κατασκευάστηκαν επειδή είχαν απλή κατασκευή και μεγάλη διαθεσιμότητα πρώτων υλών. Ένα πλεονέκτημα που παρουσιάζουν σε σύγκριση άλλα φράγματα είναι ότι η θεμελίωση τους γίνεται σε οποιαδήποτε μορφολογία εδάφους και τα υλικά κατασκευής τους είναι διαθέσιμα στο τόπο κατασκευής τους.

Εικόνα 2.1: Το χωμάτινο φράγμα Καστρακίου

Φράγματα λιθορρυπής

Τα φράγματα λιθορρυπής κατατάσσονται στην ίδια κατηγορία με τα χωμάτινα με την διαφορά ότι η κύρια μάζα επιχωμάτωσης αποτελείται από λίθους. Για το λόγο αυτό θα πρέπει να
κατασκευαστεί ζώνη φίλτρου και αποστράγγισης για να αποφευχθεί η διάβρωση του πυρήνα.[1]

Εικόνα 2.2: Το φράγμα λιθορριπής του Θυσαυρού

Φράγματα βαρύτητας από σκυρόδεμα

Τα φράγματα βαρύτητας σκυροδέματος σχεδιάζονται ώστε το ίδιο το βάρος τους να μπορεί να αντιστέκεται στις υδροστατικές δυνάμεις που ασκούνται στην ανάντι και στην κατάντι πλευρά, στη δύναμη της άνωσης, στο ίδιο το βάρος του φράγματος και στην δύναμη τριβής με το έδαφος.

Εικόνα 2.3: Φράγμα σκυροδέματος του Λούρου

Αντηριδωτά φράγματα

Τα αντηριδωτά φράγματα ουσιαστικά, είναι φράγματα βαρύτητας τα οποία αποτελούνται από πλάκες (επίπεδες ή τοξωτές) από σκυρόδεμα, κεκλιμένες ως προς τον οριζόντιο, οι οποίες στηρίζονται στα δύο άκρα τους σε κατακόρυφες αντηρίδες, τοποθετημένες ανά 15 εώς 35 m και οι οποίες με την σειρά τους μεταφέρουν τις δυνάμεις στο έδαφος. Το πλεονέκτημα αυτών των
φραγμάτων είναι ότι απαιτούν 40% λιγότερο σκυρόδεμα σε σχέση με ένα αντίστοιχο συμπαγές φράγμα σκυροδέματος, ενώ το μειονέκτημα τους είναι ότι απαιτούν υψηλότερο κόστος εργασιών.[11]

Εικόνα 2.4: Το αντηριδωτό φράγμα του Λάδωνα

2.1.2 Τοξωτά φράγματα

Τα τοξωτά φράγματα κατασκευάζονται συνήθως σε χαράδρες στενού πλάτους των οποίων τα πλευρικά τοιχώματα πρέπει να αποτελούνται από βραχώδη υλικά υψηλής αντοχής έτσι ώστε να αντέχουν τις δυνάμεις που δέχονται από το νερό.[11]

Συνήθως το ύψος τους ξεπερνά τα 200 μέτρα διότι η κατασκευή τους σε αυτά τα ύψη είναι πιο οικονομική και το φράγμα που δημιουργείται ανάμεσα στις στενές χαράδρες έχει το ανάλογο ύψος ώστε η χωρητικότητα των ταμιευτήρων να είναι αξιόλογη.[12]

Εικόνα 2.5: Το τοξωτό φράγμα του Ταυρωπού
2.2 Ταμιευτήρας

Η κατασκευή του φράγματος έχει σαν αποτέλεσμα τη δημιουργία ενός ταμιευτήρα δηλαδή μιας δεξαμενής νερού. Σκοπός του ταμιευτήρα σε ένα μικρό ΥΗΕ είναι η δημιουργία της απαραίτητης παροχής για το σύστημα υδροληψίας.

Σε κάθε στάθμη ταμιευτήρα καθορίζονται μια μέγιστη και μια ελάχιστη στάθμη. Η μεν μέγιστη στάθμη είναι συναρτήσει της στάθμης του εκχειλιστή, η δε ελάχιστη στάθμη είναι συναρτήσει της επιθυμητής παροχής υδροληψίας καθώς και της μη εισχώρησης αέρα και φερτών υλικών στον αγωγό προσαγωγής. Η χωρητικότητα που αντιστοιχεί μεταξύ ελάχιστης και μέγιστης στάθμης ονομάζεται ωφέλιμη χωρητικότητα του ταμιευτήρα.[1]

Εικόνα 2.6: Ταμιευτήρας φράγματος Λάδωνα

2.3 Υπερχειλιστής

Υπερχειλιστής είναι η κατασκευή που πραγματοποιείται για να διατηρεί την στάθμη του νερού σε χαμηλότερο επίπεδο από την στέψη του φράγματος. Ανάλογα με την λειτουργία τους διακρίνονται σε δύο είδη:

- Τους υπερχειλιστές φράγματος που σκοπό έχουν να διοχετεύουν την περίσσεια ποσότητα νερού, αποφεύγοντας με αυτό τον τρόπο την υπερχείλιση του νερού στο φράγμα που θα είχε σαν αποτέλεσμα τη διάβρωση της βάσης τους.
- Τους υπερχειλιστές των μικρών ΥΗΕ που κατασκευάζουν κατά τον ρου ενός ποταμού που σκοπό έχουν τη δημιουργία μιας λεκάνης νερού για την επαρκή διοχέτευση νερού στη διώρυγα υδροληψίας ή τη δημιουργία ικανοποιητικής υδραυλικής πτώσης.[1]
Εικόνα 2.7: Ενεργοποίηση υπερχειλιστών φράγματος Ταυρωπού

Επίσης βάσει των κατασκευαστικών χαρακτηριστικών τους οι υπερχειλιστές διακρίνονται και στις παρακάτω κατηγορίες.

Υπερχειλιστές απλής κατασκευής

Οι υπερχειλιστές αυτοί δεν μπορούν να έχουν μεγάλο ύψος λόγω της κινητικής ενέργειας του νερού που πιθανόν να υποσκάπτει τη θεμελίωση της κατασκευής. Το πλεονέκτημα που παρουσιάζουν είναι το χαμηλό κόστος, διότι η κατασκευή τους γίνεται με διαθέσιμα υλικά που υπάρχουν στον χώρο.

Πλευρικοί υπερχειλιστές

Παράλληλα με την στέψη του υπερχειλιστή κατασκευάζεται διώρυγα η οποία διοχετεύει την υπερχειλίζουσα παροχή σε ένα αγωγό ή σε σήραγγα. Η πλευρική διώρυγα πρέπει να έχει την κατάλληλη κλίση για διοχέτευση μέγιστης παροχής.

Σιφωνοειδείς υπερχειλιστές

Οι υπερχειλιστές αυτοί κατασκευάζονται για μικρά ΥΗΕ μικρού ύψους, ώστε η ανώτατη στάθμη του νερού να διατηρείται σε συγκεκριμένα όρια. Όταν αφαιρεθεί ο αέρας από το εσωτερικό του σίφωνα η διαφορά στάθμης της ανάντι δεξαμενής και εξόδου προκαλεί ανάπτυξη ροής. Η έναρξη της ροής γίνεται αυτόματα όταν η ανάντι στάθμη φθάσει την στάθμη οροφής του σίφωνα. Η διακοπή της ροής μέσω του σίφωνα επιτυγχάνεται πάλι αυτόματα όταν η ανάντι στάθμη φθάσει στη στάθμη του αεραγωγού οπότε εισέρχεται αέρας στο σύστημα και αποκαθιστάται η ατμοσφαιρική πίεση. Η διακοπή της ροής μπορεί να γίνει και χειροκίνητα με το άνοιγμα της βάννας του αγωγού αερισμού, οπότε επιτυγχάνεται διακοπή του κενού.

Οι υπερχειλιστές που λειτουργούν μέσω θυροφραγμάτων, περιστρεφόμενων, συρόμενων ή άλλων χαρακτηρίζονται ως εκχειλιστές.
Εκχειλιστής μορφής θυροφράγματος

Στον εκχειλιστή αυτόν η δυνατότητα ρύθμισης της ανάντι στάθμης και ελέγχου της παροχής που υπερχειλίζει επιτυγχάνεται με την διαμόρφωση θυροφράγμάτων μορφής πτερυγίου ή κυκλικού τόξου που τοποθετούνται στο πάνω μέρος της καμπύλης στέψης του σταθερού εκχειλιστή. Με τον τρόπο αυτό αυξάνεται σημαντικά η δυνατότητα διοχέτευσης της πλημμυρικής παροχής χωρίς την υπερβολική ανύψωση της ανάντι στάθμης. Το θυρόφραγμα μπορεί να έχει τη μορφή περιστρεφόμενου πτερυγίου, περιστρεφόμενου κυκλικού τόξου ή να είναι συρόμενο επίπεδο. Ο χειρισμός του μπορεί να γίνεται χειροκίνητα για μικρές μονάδες ή μηχανικά.

- Εκχειλιστής ελαστικός διογκούμενος

Ο διογκούμενος ελαστικός εκχειλιστής κατασκευάζεται από ενισχυμένο καουτσούκ και το ύψος του φτάνει τα 2-3 m, ενώ το μήκος του μπορεί να φτάσει τα 160 m. Προσαρμόζεται στην επίπεδη στέψη του μόνιμου εκχειλιστού προς την ανάντι πλευρά. Η μεταβολή του ύψους του εκχειλιστού επιτυγχάνεται με την εισαγωγή ή αφαίρεση νερού στο εσωτερικό της μεμβράνης μέσω μικρού αντιληπτού συγκροτήματος.[11]

2.4 Στόμια εισόδου

Η λειτουργία του στομίου εισόδου είναι να κατευθύνει το νερό υπό ελεγχόμενες συνθήκες από το φράγμα στον αγωγό πτώσης ή στο κανάλι προσαγωγής. Το βασικό κριτήριο στη σχεδίαση ενός στομίου εισόδου είναι ο προσανατολισμός του ως προς το ρεύμα, ελέγχοντας κατά αυτόν τον τρόπο την ποσότητα και την ποιότητα του εισερχόμενου νερού. Οι ποταμοί αποθέτουν φερτά υλικά στις εσωτερικές πλευρές των καμπυλών, οπότε το στόμιο εισόδου δεν πρέπει να κατασκευάζεται στο εσωτερικό της καμπύλης αποφεύγοντας το φραξιμό της εισόδου από φερτά υλικά. Ο καλύτερος προσανατολισμός για την κατασκευή στομίου εισόδου είναι παράλληλα και υπό μικρή γωνία ως προς τον άξονα του υπερχειλιστή ώστε τα φερτά υλικά να απομακρύνονται αυτόματα κατά τις συχνές πλημμυρίδες που δημιουργούνται στον υπερχειλιστή.

Μια από τις βασικές λειτουργίες των στομίων εισόδου είναι η ελαχιστοποίηση των φερτών υλικών στο εισερχόμενο νερό και για αυτό τον λόγο, μετά το στόμιο εισόδου, τοποθετούνται σχάρες απορριμμάτων για την αποφυγή φερτών υλικών και μεγάλων λίθων. Οι σχάρες αυτές αποτελούνται από παράλληλες ράβδους, οι οποίοι είναι κατασκευασμένες από μέταλλο ή σκληρό πλαστικό. Το πλάτος των ράβδων αυτών είναι 12 mm για τους μικρούς στροβίλους τύπου Pelton και φτάνουν μέχρι 150 mm για τους μεγάλους στροβίλους τύπου έλικα. Οι σχάρες στερεώνονται με μπουλόνια από ανοξείδωτο χάλυβα ή ολισθαίνουν σε κάθετες ράγες ώστε να αφαιρούνται και να αντικαθίστανται από φραγές όταν απαιτείται διακοπή της λειτουργίας για συντήρηση ή επισκευή.

Οι σχάρες μπορούν να καθαρίζονται με χειροκίνητο ή αυτόματο τρόπο. Όταν ο καθαρισμός γίνεται με χρήση χειροκίνητου εργαλείου θα πρέπει στην επάνω ανώτατη στάθμη του νερού να
κατασκευαστεί οριζόντια πλατφόρμα για να διευκολύνει την εργασία αυτή, ενώ όταν γίνεται αυτόματα χρησιμοποιούνται μηχανικά χτένια.[9]

2.5 Κανάλια Προσαγωγής

Το νερό από το στόμιο εισόδου οδηγείται είτε σε ένα κανάλι είτε στον στρόβιλο μέσω ενός σωλήνα κατάθλιψης. Η παροχή σε ένα κανάλι καθορίζεται από την κατανομή της εγκάρσιας διατομής του, της κλίσης του και της τραχύτητας του.

Η ταχύτητα του νερού που αναπτύσσεται μέσα στο κανάλι πρέπει να βρίσκεται σε μια ορισμένη τιμή ώστε να αποτραπεί η ιζηματαπόθεση και ανάπτυξη φυτών και να αποφευχθεί η διάβρωση σε μη επενδυμένα κανάλια. Για να διατηρηθεί η υλική σε αιώρηση μετά το στόμιο εισόδου, η ταχύτητα ροής πρέπει να είναι τουλάχιστον 0,3-0,5 m/s. Εάν το κανάλι είναι κατασκευασμένο σε αμμώδες έδαφος και είναι μη επενδυμένο η ταχύτητα δεν πρέπει να υπερβαίνει τα 0,4-0,6 m/s. Σε κανάλια με επένδυση τσιμέντος η ταχύτητα του διανυκτούς νερού μπορεί να φτάσει μέχρι και τα 10 m/s χωρίς κίνδυνο. Όταν το νερό περιέχει άμμο, χαλίκια ή πέτρες, είναι αποδεκτές ταχύτητες έως 4 m/s.

Κατά την κατασκευή του καναλιού μπορεί να παρουσιαστούν εμπόδια στην κατεύθυνση που θα πρέπει να διέλθει το κανάλι με αποτέλεσμα να πρέπει να παρακαμψούν περνώντας το κανάλι πάνω ,γύρω ή κάτω από αυτά. Αυτό μπορεί να γίνει με τη κατασκευή ενός πρόσθετου τεχνητού καναλιού με την ίδια κλίση και υποστηριζόμενο στους στύλους από σκυρόδεμα ή χάλυβα.

Στο τέλος του καναλιού αμέσως πριν την είσοδο του αγωγού πτώσης, υπάρχει η δεξαμενή φόρτισης η οποία χρησιμοποιείται για την επαρκή παροχή νερού που απαιτείται κατά την εκκίνηση των υδροστροβίλων.[9]

Εικόνα 2.8: Κανάλι προσαγωγής
2.6 Δεξαμενή Φόρτισης

Η δεξαμενή φόρτισης κατασκευάζεται στο άκρο της διώρυγας και από αυτή τροφοδοτείται ο αγωγός πτώσης.

Ο βασικός σκοπός της δεξαμενής φόρτισης είναι η συνεχής τροφοδότηση με νερό του αγωγού πτώσεως και των υδροστροβίλων κατά την εκκίνησή τους. Επειδή οι υδροστροβίλοι έχουν μικρό χρόνο εκκίνησης της τάξεως 5 με 10 sec η διώρυγα δε θα είχε την απαραίτητη παροχή για να τροφοδοτήσει τον αγωγό πτώσεως με αποτέλεσμα την εισχώρηση αέρα ο οποίος θα δημιουργούσε προβλήματα στη λειτουργία των μονάδων.

Η δεξαμενή φόρτισης θα πρέπει να διαθέτει υπερχειλιστή για να διοχετεύει την υπερβάλλουσα παροχή κυρίως κατά τη στάθμη των υδροστροβίλων. Επίσης να έχει θυροφράγματα στο άκρο της διώρυγας και στην είσοδο της δεξαμενής φόρτισης για ανάγκες συντήρησης και στην ανάντι πλευρά του αγωγού πτώσεως να τοποθετείται μεταλλική σχάρα για τη συγκράτηση των επιπλέοντων υλικών.[1]

Εικόνα 2.9: Δεξαμενή φόρτισης ΜΥΗΕ

2.7 Αγωγός πτώσεως

Από τη δεξαμενή φόρτισης το νερό μεταφέρεται στον στροβίλο μέσω ενός σωλήνα κατάθλιψης ή ενός αγωγού πτώσης. Οι αγωγοί πτώσεως μπορούν να εγκατασταθούν επιφανειακά ή υπόγεια στο έδαφος ανάλογα με παράγοντες που επηρεάζουν τη λειτουργία τους, όπως είναι το ανάγλυφο του εδάφους, το υλικό του αγωγού, οι θερμοκρασίες του περιβάλλοντος και οι περιβαλλοντικές απαιτήσεις.

Οι αγωγοί πτώσεως που τοποθετούνται εντός του εδάφους καλύπτονται με άμμο και χαλίκια δημιουργώντας κατά αυτό τον τρόπο ικανοποιητικό βαθμό μόνωσης και αποφεύγοντας πρόσθετα έργα για αγκυρώσεις και αρμούς διαστολής. Οι θαμμένοι αγωγοί βάφονται και καλύπτονται έτσι ώστε να αποφεύγεται η διάβρωση της επιφάνειας τους. Ο τρόπος αυτός είναι
ο πιο ικανοποιητικός διότι το έδαφος επανέρχεται στην αρχική του κατάσταση και ο αγωγός δεν δημιουργεί εμπόδιο για την διέλευση άγριων ζώων.

Ο αγωγός πτώσης τοποθετείται σε ευθείες ή σχεδόν ευθείες, με αγκυρώσεις από σκυρόδεμα σε κάθε καμπύλη και έναν αρμό διαστολής ανάμεσα σε κάθε ζεύγος αγκυρώσεων. Οι αγκυρώσεις πρέπει να είναι σε θέση να αντέχουν την ύση του αγωγού καθώς και τις δυνάμεις της τριβής που δημιουργούνται κατά τη διαστολή-συστολή που δημιουργείται από τη μεταβολή της θερμοκρασίας όταν ο υδροστρόβιλος δεν λειτουργεί.[11]

Εικόνα 2.10: Αγωγός πτώσης

Ανάλογα με το υλικό κατασκευής τους οι αγωγοί πτώσης διακρίνονται στις ακόλουθες κατηγορίες:

Πλαστικοί Σωλήνες

Οι πλαστικοί σωλήνες χρησιμοποιούνται για παροχές νερού μέχρι 0,03 m³/sec και για ύψη πτώσης μικρότερα των 150 m. Τα πλεονεκτήματα που παρουσιάζουν είναι το μικρό βάρος τους, το μικρό κόστος και η ευκολία στην κατασκευή του σωλήνα πτώσης. Το μειονέκτημα τους είναι ότι προκαλείται αλλοίωση του υλικού από την ηλιακή ακτινοβολία με αποτέλεσμα ο πλαστικός σωλήνας να είναι εύθραυστος.

Αμιαντοσωλήνες

Οι αμιαντοσωλήνες χρησιμοποιούνται για παροχές νερού μέχρι 0,2 m³/sec και για ύψη πτώσης μικρότερα από 160 m. Λόγω έλλειψης ελαστικότητας δεν συνίσταται η τοποθέτηση τους σε ασταθές έδαφος.
Χαλυβοσωλήνες

Οι χαλυβοσωλήνες συνήθως χρησιμοποιούνται για την κατασκευή του αγωγού πτώσης στην πλειονότητα των υδροηλεκτρικών σταθμών. Τα πλεονεκτήματα που παρουσιάζουν είναι ότι έχουν υψηλή αντοχή και ελαστικότητα καθώς μπορεί να συγκολληθούν και διαμορφωθούν κατάλληλα τα τμήματα τους.

Σωλήνες από ελατό χυτοσίδηρο

Στους σωλήνες από ελατό η σύνδεση των τμημάτων γίνεται με κατάλληλη διαμόρφωση των άκρων μέσω συνδέσμων αρσενικού-θηλυκού και την παρεμβολή ειδικού ελαστικού συνδέσμου μορφής δακτυλίου ανάμεσά τους, εξασφαλίζοντας την απαιτούμενη στεγανότητα. Τα πλεονεκτήματα που παρουσιάζουν είναι η γρήγορη εγκατάσταση, με την επιτρεπτή κλίση μεταξύ δύο διαδοχικών τμημάτων να κυμαίνονται από (2ο έως 5ο) καθώς δεν απαιτείται ειδικός εξοπλισμός για την εγκατάσταση τους.

Σωλήνες από περιτυλιγμένες ίνες γυαλιού

Οι σωλήνες αυτοί γνωστοί και ως GRP (Glass Reinforced Plastic) αποτελούνται από ένα στερεό κυλινδρικό πυρήνα ο οποίος περικλείεται από ίνες γυαλιού σε διάφορες στρώσεις και διαφορετικές κατευθύνσεις αυξάνοντας την αντοχή τους. Η σύνδεση μεταξύ τους γίνεται μέσω συνδέσμων μορφής χιτώνιον. Τα πλεονεκτήματα που παρουσιάζουν είναι το μικρό τους βάρος, το μικρό κόστος, η ευκολία και η ταχύτητα εγκατάστασης και η ανθεκτικότητα στην διάβρωση. Ως μειονεκτήματα μπορούν θα θεωρηθούν η μικρή αντοχή σε εξωτερικά φορτία, η μικρή ακαμψία καθώς και ο περιορισμός των εφαρμογών λόγω πίεσης λειτουργίας.

Σωλήνες από υψηλής πυκνότητας πολυαιθυλένιο

Οι σωλήνες αυτοί γνωστοί και ως HDPE (High Density Polyethylene Pipe) κατασκευάζονται από πολυαιθυλένιο. Η σύνδεση μεταξύ τους γίνεται είτε με εξαρτήματα τύπου Gibault είτε με συγκόλληση. Η συγκόλληση μπορεί να γίνει με δύο τρόπους. Με ηλεκτροσυγκόλληση κατά την οποία τα δύο άκρα θερμαίνονται από ηλεκτρομούφα και με τη χρήση θερμοαντικής πλάκας.[11]

Ένας αγωγός πτώσης χαρακτηρίζεται από τα υλικά, τη διάμετρο του, το πάχος του τοιχώματος και τον τύπο των αρμών. Συγκεκριμένα το υλικό επιλέγεται βάσει:

- των συνθηκών του εδάφους,
- της προσιτότητας,
- του βάρους,
- του συστήματος των αρμών και του κόστους.

Η διάμετρος επιλέγεται ώστε

- να μειώνονται οι απώλειες τριβής μέσα στον αγωγό πτώσης σε ένα αποδεκτό επίπεδο.
Το πάχος του τοιχώματος επιλέγεται

- ώστε να αντέχει στη μέγιστη υδραυλική πίεση όχλησης, συμπεριλαμβανομένης της μεταβατικής πίεσης κυματισμού που εμφανίζεται κατά την ταχεία αύξηση ή μείωση της παροχής.[9]

2.8 Αυλάκια απαγωγής

Το νερό αφού διέλθει από τον υδροστρόβιλο επιστρέφει στο ποταμό μέσω ενός καναλιού που ονομάζεται αυλάκι απαγωγής. Λόγω των υψηλών ταχυτήτων εξόδων που έχουν οι υδροστρόβιλοι ώστε το αυλάκι θα πρέπει να είναι κατασκευασμένο κατά τέτοιο τρόπο που να μην υποσκάπτεται ο σταθμός ηλεκτροπαραγωγής.

Η σχεδίαση του αυλακιού θα πρέπει να είναι τέτοια ώστε κατά τη διάρκεια υψηλών παροχών το νερό να μην υπερβαίνει μια καθορισμένη στάθμη και να παρεμποδίζει τη λειτουργία του υδροστρόβιλου.[9]

Εικόνα 2.11: Αυλάκι απαγωγής

2.9 Υδροστρόβιλοι

Ως υδροστρόβιλος ονομάζεται μια περιστρεφόμενη μηχανή που μετατρέπει τη δυναμική ενέργεια του νερού σε μηχανική ενέργεια. Η μετατροπή της ενέργειας του διερχόμενου υγρού σε μηχανική γίνεται στο στρεφόμενο μέρος της μηχανής το οποίο καλείται δρομέας. Η άτρακτος του δρομέα είναι συζευγμένη με την άτρακτο της ηλεκτρικής γεννήτριας μέσω της οποίας γίνεται η μετατροπή της μηχανικής ενέργειας σε ηλεκτρική. Υπάρχουν δύο βασικοί τύποι στροβίλων, γνωστοί ως στροβίλοι “δράσης” και “αντιδράσης”. [13]
2.9.1 Υδροστρόβιλοι Δράσης

Οι υδροστρόβιλοι δράσεως είναι μερικής προσβολής. Η δέσμη νερού προσπίπτει πάνω στα πτερύγια και μετατρέπει όλη τη διαθέσιμη ενέργεια λόγω πιέσεως σε κινητική πριν το νερό προσπέσει στα σκαφίδια του δρομέα. Η πρόσπτωση γίνεται μόνο επί του τμήματος της περιφέρειας του δρομέα ώστε να μην υφίσταται καμία μεταβολή η στατική πίεση επί του δρομέα.[13]

Χαρακτηριστικοί τύποι υδροστροβίλων δράσεως είναι ο υδροστρόβιλος Pelton, ο υδροστρόβιλος Cross-flow (εγκάρσιας ροής) και ο υδροστρόβιλος Turgo.

Οι στρόβιλοι Pelton είναι κατάλληλοι για μεγάλα ύψη πτώσης. Το νερό εισέρχεται στο στρόβιλο μέσω ενός χαλύβδινου σωλήνα στο άκρο του οποίου υπάρχουν ένα ή περισσότερα ακροφύσια. Από τα ακροφύσια εξέρχεται μια δέσμη νερού με μεγάλη ταχύτητα και προσπίπτει στα διπλού κοιλώματος σκαφίδια του δρομέα. Στο διαχωρισμό των σκαφιδίων η δέσμη του νερού διαχωρίζεται με αποτέλεσμα να δημιουργείται πίεση πάνω στα σκαφίδια που αρχίζουν να περιστρέφονται μαζί με τον δρομέα του υδροστροβίλου. Στο ακροφύσιο υπάρχει και μια βελόνη η οποία κινείται ανάλογα με τον ρυθμιστή που καθορίζει την παροχή ώστε να προσαρμόζει την ισχύ ανάλογα με τη ζήτηση.[14]

![Εικόνα 2.12:Υδροστρόβιλος Pelton 2 δεσμίδων](image)

Οι στρόβιλοι εγκάρσιας ροής, συχνά καλούμενος και ως στρόβιλος Ossberger, από την ομώνυμη εταιρία που τον κατασκευάζει για παραπάνω από 50 χρόνια, ή στρόβιλος Michell, μπορεί να χρησιμοποιηθεί για ένα ευρύ φάσμα υψών πτώσης, επικαλύπτοντας αυτά των στροβίλων Kaplan, Francis και Pelton. Είναι ιδιαίτερα κατάλληλος για ένα ρέμα με μεγάλη παροχή και μικρό ύψος πτώσης.[1]
Εικόνα 2.13: Υδροστρόβιλος εγκάρσιας ροής

Ο στρόβιλος Turgo είναι κατάλληλος για ύψη πτώσης από 30 έως 300 m. Οι κάδοι διαμορφώνονται διαφορετικά σε σχέση με ένα υδροστρόβιλο Pelton. Το εισερχόμενο νερό προσπίπτει υπό γωνία 20° στο δρομέα και το νερό εισέρχεται από την μία πλευρά του δίσκου και εξέρχεται από την άλλη. Λόγω της υψηλής ταχύτητας του δρομέα του Turgo και της μικρής διάμετρου η σύζευξη στροβίλου και γεννήτριας γίνεται πιο γρήγορα.[1]

Εικόνα 2.14: Υδροστρόβιλος Turgo

2.9.2 Υδροστρόβιλοι Αντίδρασης

Στους υδροστρόβιλους αντίδρασης το νερό περνάει συνεχώς μέσα από ολόκληρη την περιφέρεια του υδροστροβίλου και εξέρχεται αξονικά. Η ροή γίνεται μέσω της πτερωτής με παράλληλη μεταβολή της στατικής πίεσης και γι' αυτό οι πτερωτές είναι ολικής προσβολής.
δηλαδή λειτουργούν ομοιόμορφα κατά την περιφερειακή διεύθυνση. Με αυτό τον τρόπο το ρευστό παρέχει μια σταθερή ύδρευση στο δρομέα.[13]

Χαρακτηριστικοί τύποι υδροστροβίλων αντιδράσεως είναι ο υδροστρόβιλος Francis ακτινικής και μικτής ροής και οι υδροστροβίλοι αξονικής ροής (Kaplan)

Οι στρόβιλοι Francis είναι κατάλληλοι για μεσαία ύψη πτώσης. Το νερό εισέρχεται σε ένα σπειροειδές κέλυφος και εκτείνεται περιμετρικά σε όλη την περίμετρο της πτερωτής. Για την ρύθμιση του νερού που εισέρρεται στο εσωτερικό του υδροστροβίλου και επομένως και της ισχύος σύμφωνα με τη ζήτηση υπάρχει γύρω από τον δρομέα μια ρυθμιστική διάταξη η οποία αποτελείται από μια σταθερή στεφάνη με κινητά πτερύγια. Τα πτερύγια αυτά έχουν σαν αποστολή να κατευθύνουν το νερό στη σωστή διεύθυνση, γι’ αυτό και ονομάζονται οδηγά πτερύγια. Πλησία στον δρομέα υπάρχουν και ειδικά διαμορφωμένα πτερύγια τα οποία εκτρέφουν την ροή του νερού. Με την εκτροπή του νερού δημιουργείται μία πίεση στα πτερύγια αυτά με αποτέλεσμα την περιστροφή του δρομέα. Τέλος, οι στρόβιλοι Francis κατασκευάζονται με κατακόρυφους ή οριζόντιους ατράκτους.[14]

Εικόνα 2.15: Υδροστρόβιλος Francis

Οι στρόβιλοι τύπου Kaplan χρησιμοποιούνται για μικρά ύψη πτώσης. Το νερό στον στρόβιλο Kaplan προσπίπτει στην πτερωτή όπου στον στρόβιλο Francis μετα μια ρυθμιστικής διάταξης που αποτελείται από μια σταθερή στεφάνη με κινητά πτερύγια. Η λοξή θέση των πτερυγίων αυτών προκαλεί μια περιστροφική κίνηση στο νερό που βρίσκεται στον ελεύθερο χώρο πάνω από τα πτερύγια της πτερωτής. Η πτερωτή Kaplan έχει ανάλογα με το μέγεθος της ,τρία ως επτά πτερύγια, λοξά ταποθετημένα. Η δύναμη που έχει πάρει το νερό από τα ρυθμιστικά πτερύγια ασκεί μια πίεση στα πτερύγια προκαλώντας την περιστροφή του δρομέα. Το πλεονέκτημα που παρουσιάζουν οι στρόβιλοι Kaplan είναι η μεταβλητή κλίση των πτερυγίων της πτερωτής από την οποία μπορούμε να ρυθμίσουμε την ροή του νερού, επομένως και την ισχύ που θέλουμε να παραχθεί.[14]
Οι βολβοειδείς και οι σωληνωτές μονάδες έχουν προκύψει από τους στροβίλους τύπου έλικα και Kaplan με την ροή να εισέρχεται και εξέρχεται με ελάχιστες αλλαγές στη διεύθυνση. Στον βολβοειδή στρόβιλο ο πολλαπλαισιαστής και η γεννήτρια εγκλείονται μέσα σε ένα βολβό βυθισμένο στη ροή. Οι σωληνωτοί στρόβιλοι επιτρέπουν ποικιλίες διαρρυθμίσεις, όπως τη μετάδοση κίνησης υπό ορθή γωνία, στροβίλους Straflo με αγωγούς σχήματος S, γεννήτριες με μαντοκίνηση, κ.λ.π.[1]

2.9.3 Επιλογή κατάλληλου υδροστροβίλου

Η επιλογή του τύπου, της γεωμετρίας και των διαστάσεων του στροβίλου καθορίζονται κατά κύριο λόγο από τα ακόλουθα κριτήρια:

- Το καθαρό ύψος πτώσης
- Το εύρος των παροχών του νερού που διέρχεται από τον στρόβιλο
- Την ταχύτητα περιστροφής
- Προβλήματα σπηλαίωσης
- Το κόστος[15]

Στην παρακάτω εικόνα παρουσιάζεται το εύρος λειτουργίας των διαφόρων τύπων υδροστροβίλων σε συνάρτηση με το ύψος πτώσης και την παροχή.
Εικόνα 2.17: Επιλογή υδροστροβίλου βάσει ύψους υδατόπτωσης-παροχής

Σύμφωνα με το παραπάνω διάγραμμα της εικόνας 2.17 παρατηρούμε ότι:

- Ο υδροστρόβιλος Pelton χρησιμοποιείται για μεγάλη ύψη πτώσης της τάξεως 400 m και άνω, ωστόσο παρουσιάζει περιορισμό στην ποσότητα της παροχής.
- Ο υδροστρόβιλος Turgo που είναι μια παράλλαγή του υδροστρόβιλου Pelton έχει κατασκευαστεί να λειτουργεί για υψηλότερες παροχές.
- Ο υδροστρόβιλος Francis καλύπτει ένα μέσο εύρος ύψων πτώσης και παροχών.
- Ο υδροστρόβιλος Kaplan χρησιμοποιείται για υψηλές παροχές και για χαμηλά ύψη πτώσης.
- Δύο παραλλαγές του υδροστροβίλου Kaplan είναι ο υδροστρόβιλος Deriaz και ο βολβοειδής υδροστρόβιλος. Ο πρώτος χρησιμοποιείται για υψηλότερα ύψη πτώσης χωρίς να υποτεθεί σε παροχή, ο δε δεύτερος έχει κατασκευαστεί να καλύπτει περιοχή λειτουργίας για μεγαλύτερες παροχές έως 100 m3/s.[16]

Ο επόμενος πίνακας δείχνει το εύρος του κατάλληλου ύψους πτώσης για τους διάφορους τύπους στροβίλων.
Πίνακας 2-1: Εύρος ύψους πτώσης [15]

<table>
<thead>
<tr>
<th>Τύποι στροβίλων</th>
<th>Εύρος ύψους πτώσης σε (m)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaplan και έλικας</td>
<td>2<(H<15)</td>
</tr>
<tr>
<td>Francis</td>
<td>4<(H<100)</td>
</tr>
<tr>
<td>Pelton</td>
<td>30<(H<1000)</td>
</tr>
<tr>
<td>Εγκάρσιας ροής</td>
<td>1<(H<150)</td>
</tr>
<tr>
<td>Turgo</td>
<td>50<(H<250)</td>
</tr>
</tbody>
</table>

2.10 Γεννήτριες

Οι γεννήτριες είναι οι μηχανές που μετατρέπουν την παραγόμενη μηχανική ενέργεια των υδροστροβίλων σε ηλεκτρική ενέργεια. Αποτελούνται από τον δρομέα που είναι το κινούμενο μέρος της μηχανής και από τον στάτη που είναι το σταθερός μέρος. Από την πλευρά του σταθμού, επικοντύνεται μόνιμης προέλευσης και τυλίγματα τα οποία δημιουργούν το μαγνητικό πεδίο καθώς περιστρέφονται ο δρομέας. Αν και οι πρώτοι υδροηλεκτρικοί σταθμοί χρησιμοποίονταν γεννήτριες συνεχούς ρεύματος (Σ.Ρ) σήμερα χρησιμοποιούν εναλλασσομένου ρεύματος (Ε.Ρ). Ανάλογα με τις απαιτήσεις του υφιστάμενου δικτύου υπάρχουν δύο επιλογές γεννητριών:

- Σύγχρονες γεννήτριες

Για να τεθούν αυτές οι γεννήτριες σε λειτουργία πρέπει να τροφοδοτηθεί με συνεχές ρεύμα το τύλιγμα διεγέρσεως του δρομέα το οποίο είναι υπεύθυνο για την δημιουργία μαγνητικού πεδίου. Καθώς ο δρομέας περιστρέφεται παίρνοντας κίνηση από μια εξωτερική κινητήρια μηχανή (υδροστροβίλο), το μαγνητικό πεδίο που δημιουργείται από το ρεύμα διεγέρσεως περιστρέφεται μαζί του. Το στρεφόμενο μαγνητικό πεδίο παράγει τριφασική τάση στα τυλίγματα του σταθμού η οποία εμφανίζεται και στα άκρα της γεννήτριας.

Εικόνα 2.18: Σύγχρονη γεννήτρια
Η τροφοδοσία του τυλίγματος διεγέρσεως μπορεί να γίνει με δύο τρόπους

1. Με τροφοδοσία από εξωτερική πηγή συνεχούς ρεύματος, οπότε ο δρομέας θα πρέπει να περιέχει ψήκτρες και δαχτυλίδια.
2. Με τροφοδοσία από ειδική πηγή συνεχούς ρεύματος τοποθετημένη πάνω στον άξονα της γεννήτριας.[16]

Η αναπτυσσόμενη τάση σε κάθε φάση ισούται με:

\[E_A = \sqrt{2} \pi N_C \Phi f \] (2.1)

Όπου:

\(N_C \): Κατασκευαστικά χαρακτηριστικά της γεννήτριας.
\(\Phi \): Η μαγνητική ροή ανά πόλο σε Τ.
\(f \): Η ηλεκτρική συχνότητα περιστροφής σε Ηζ.

Όμως λόγω της παρουσίας των αυτεπαγωγών και των αντιστάσεων των τυλιγμάτων του στάτη καθώς και της παραμόρφωσης του μαγνητικού πεδίου στο διάκενο, η τάση στα άκρα μιας φάσης δίνεται από την ακόλουθη σχέση:

\[V_\Phi = E_A - jX_S I_A - R_A I_A \] (2.2)

Όπου:

\(V_\Phi \): Η αναπτυσσόμενη τάση στα άκρα μιας φάσης σε V (volt).
\(E_A \): Η ιδανική αναπτυσσόμενη τάση στα άκρα μιας φάσης σε V (volt).
\(X_S \): Η σύγχρονη αντίδραση της γεννήτριας η οποία ισούται \(X_S = X + X_A \) σε Ω (ωμ).
\(R_A \): Η ωμική αντίσταση τυλίγματος ανά φάση σε Ω (ωμ).
\(I_A \): Το ρεύμα στους ακροδέκτες της γεννήτριας ανά φάση σε Α (Ampere).

Τέλος μια σύγχρονη γεννήτρια κατά τη μετατροπή της μηχανικής ενέργειας σε ηλεκτρική παρουσιάζει απώλειες, έτσι η ισχύς εξόδου δε μπορεί να είναι ίση με την ισχύ εισόδου. Η ισχύς εισόδου της γεννήτριας ισούται με:

\[P_{in} = \tau_{app} \omega \text{in} \] (2.3)

Όπου

\(P_{in} \): Η μηχανική ισχύς εισόδου της γεννήτριας σε HP.
\(\tau_{app} \): Η ροπή στον άξονα της γεννήτριας σε Nm.
ωₙ: Η γωνιακή ταχύτητα περιστροφής του δρομέα σε rad/sec

Η ενεργός ισχύς εξόδου της γεννήτριας Pₒᵤₜ ισούται με:

\[Pₒᵤₜ = \sqrt{3} V_T I_L \cos \theta \] (2.4)

Και η άεργος ισχύς εξόδου της γεννήτριας Qₒᵤₜ ισούται με:

\[Qₒᵤₜ = \sqrt{3} V_T I_L \sin \theta \] (2.5)

Οπου:

\[Pₒᵤₜ: Η ενεργός ισχύς εξόδου της γεννήτριας σε W \]
\[Qₒᵤₜ: Η άεργος ισχύς εξόδου της γεννήτριας σε VAR \]
\[V_T: Η πολική τάση στα άκρα της γεννήτριας σε V \]
\[I_L: Το ρεύμα γραμμής σε A \]
\[\theta: Η γωνία μεταξύ του ρεύματος και τάσης σε κάθε φάση.[16] \]

- Ασύγχρονες γεννήτριες.

Στην περίπτωση της επαγωγικής γεννήτριας ο στάτης τροφοδοτείται από ένα τριφασικό δίκτυο. Ο άξονας της γεννήτριας περιστρέφεται με την βοήθεια μιας κινητήριας μηχανής με ταχύτητα μεγαλύτερη από την σύγχρονη ταχύτητα. Τη στιγμή που η ταχύτητα περιστροφής ξεπερνά την σύγχρονη ταχύτητα το στρεφόμενο πεδίο του στάτη αναπτύσσει μια αρνητική ροπή που τείνει να φρενάρει την κίνηση του άξονα, εμποδίζοντας την παραπέρα επιτάχυνσή του. Η ροπή αυτή ονομάζεται ηλεκτρομαγνητική πέδηση. Στην περίπτωση αυτή η ισχύς δεν μετατρέπεται σε θερμότητα αλλά επιστρέφει στο δίκτυο.

Εικόνα 2.19: Ασύγχρονη γεννήτρια
Σύμφωνα με όσα αναφέρθηκαν παραπάνω για την αρχή λειτουργίας της ασύγχρονης γεννήτριας ισχύει:

\[\omega_m \geq \omega \Rightarrow S = \frac{\omega - \omega_m}{\omega} \leq 0 \] \hspace{1cm} (2.6)

Η ροπή του δρομέα, η ηλεκτρομαγνητική πέδηση της γεννήτριας (\(T_m < 0\)), οι ισχείς του φορτίου, του διακένου καθώς και η ηλεκτρικής ισχύς της μηχανής είναι αρνητικές, καθώς επιστρέφουν στο δίκτυο.

Για τη δημιουργία μαγνητικού πεδίου στο διάκενο απαιτείται άεργος ισχύς που πρέπει να απορροφηθεί από το δίκτυο. Για τη δημιουργία άεργου ισχύος χρησιμοποιούνται συστοιχίες πυκνωτών που συνδέονται στα άκρα της γεννήτριας εξασφαλίζοντας τη συνεχή παραγωγή της απαιτούμενης τάσης τροφοδοσίας.[17]

Οι ασύγχρονες γεννήτριες χρησιμοποιούνται σε μεγάλα δίκτυα όπου η παραγωγή τους είναι ένα αμελητέο ποσοστό του φορτίου του συστήματος ισχύος. Η αποδοτικότητά τους είναι 2 έως 4% μικρότερη από την αποδοτικότητα των σύγχρονων γεννητριών σε όλο το εύρος λειτουργίας τους.[9]

2.11 Κιβώτια ταχυτήτων και πολλαπλασιαστές ταχύτητας

Όταν η ταχύτητα περιστροφής του υδροστροβίλου και της γεννήτριας είναι η ίδια προτείνεται η άμεση σύζευξη μεταξύ τους, δηλαδή η τοποθέτηση των αξόνων τους σε ευθεία. Με αυτό τον τρόπο υπάρχουν μικρότερες απώλειες ισχύος και απαιτείται ελάχιστη συντήρηση. Υπάρχουν δύο τρόποι σύνδεσης των στροβίλων, η εύκαμπτη και η άκαμπτη σύζευξη, με την εύκαμπτη να είναι η πιο συνηθισμένη λόγω του ότι μπορεί να υπάρχει μια μικρή απόκλιση στην ευθυγράμμιση. Σε στροβίλους μικρότερης ισχύος στους οποίους η ταχύτητα περιστροφής είναι μικρότερη από 400 rpm απαιτείται πολλαπλασιαστής ταχύτητας για ανύψωση της ταχύτητας στην επιθυμητή τιμή των 1000-1500 rpm των τυποποιημένων γεννητριών Ε.Ρ.

Η επιλογή του πολλαπλασιαστή ταχύτητας μπορεί να γίνει μεταξύ των ακόλουθων εμπορικά διαθέσιμων τύπων:

- Κιβώτιο ταχυτήτων παράλληλου άξονα.
- Επικυκλικό κιβώτιο ταχυτήτων.
- Κιβώτιο ταχυτήτων ορθής γωνίας με κωνικά γρανάζια.
- Μετάδοση κίνησης με ιμάντα.

Οι πολλαπλασιαστές ταχύτητας όμως παρουσιάζουν και μειονεκτήματα όπως είναι η αύξηση θορύβου στο σταθμό ηλεκτροπαραγωγής, η αύξηση των απωλειών τριβής της τάξεως του 2% της παραγόμενης ισχύος και η πρόσθετη συντήρηση.[9]
2.12 Υποσταθμός ανύψωσης τάσης

Η παραγόμενη ηλεκτρική τάση των γεννητριών στους μικρούς υδροηλεκτρικούς σταθμούς είναι συνήθως η χαμηλή των 400 Volt για μικρές ισχύες και η μέση (6 ή 20 KV) για μεγαλύτερες ισχύες. Οι τάσεις αυτές είναι χαμηλές για να είναι δυνατή η μεταφορά της ηλεκτρικής ενέργειας σε μεγάλες αποστάσεις. Γι' αυτό τον λόγο η τάση ανυψώνεται στα 150 kV ή 400 kV και μέσω των γραμμών μεταφοράς μεταφέρεται κοντά στους καταναλωτές.

Για την ανύψωση της τάσης χρησιμοποιούνται ηλεκτρικές εγκαταστάσεις που ονομάζονται υποσταθμοί στους οποίους γίνεται η μετατροπή, η κατανομή ή η διανομή της ηλεκτρικής ενέργειας.[18]

Ένας υποσταθμός αποτελείται από διακοπτικό εξοπλισμό, η παρουσία του οποίου εξασφαλίζει την προστασία της εγκατάστασης από ρεύματα της τάξεως των δεκάδων kA που παρουσιάζονται σε περιπτώσεις σφάλματος, και από έναν ή περισσότερους μετασχηματιστές ισχύος που χρησιμοποιούνται για την ανύψωση ή τον υποβιβασμό της τάσης.

Οι βασικές κατηγορίες των αυτόματων διακοπτών είναι οι ακόλουθες:

1. Αυτόματος διακόπτης λαδιού

Ο αυτόματος διακόπτης λαδιού αποτελείται από δύο επαφές για κάθε πόλο, οι οποίες είναι τοποθετημένες μέσα σε λάδι. Κατά το άνοιγμα των επαφών δημιουργείται ηλεκτρικό τόξο, το οποίο είχε σαν αποτέλεσμα τη δημιουργία φυσαλίδων και την αύξηση του όγκου του. Αυτό προκαλεί τη γρήγορη κυκλοφορία του λαδιού που απομακρύνει την θερμότητα που αναπτύχθηκε από το ηλεκτρικό τόξο και αυξάνει την αντίσταση των επαφών σβήνοντας το ηλεκτρικό τόξο πολύ γρήγορα.[18]

2. Αυτόματος διακόπτης αέρα

Η χρήση των αυτόματων διακοπτών αέρα έχει περιορισθεί σε σχέση με παλιότερα στη μέση τάση. Τα πλεονεκτήματα που παρουσιάζει η χρήση του ατμοσφαιρικού αέρα είναι ότι ανακτά πολύ γρήγορα τις μονωτικές του ιδιότητες, είναι οικονομικός και βρίσκεται σε αφθονία.[18]

3. Αυτόματος διακόπτης εξαφθοριούχου θείου SF₆

Στους αυτόματους διακόπτες εξαφθοριούχου θείου το ηλεκτρικό τόξο σβήνει κατά τη αποσύνθεση του μονωτικού αερίου SF₆. Η χρήση τους έχει αυξηθεί τα τελευταία χρόνια λόγω του πλεονεκτημάτων που παρουσιάζουν, όπως η μεγάλη διάρκεια ζωής και ο μικρός χώρος που απαιτείται για την τοποθέτησή τους.[19]
4. Διακόπτης ισχύος κενού

Οι διακόπτες κενού χρησιμοποιούνται για περιοχή τάσεων από 3-70 kV. Τα πλεονεκτήματα που παρουσιάζουν είναι ότι έχουν μεγάλη διάρκεια ζωής, είναι οικονομικοί, έχουν μηδενική πιθανότητα πυρκαγιάς και δεν εκπέμπουν αέρια κατά τη λειτουργία τους.[19]

Μετασχηματιστής ισχύος

Μετασχηματιστής είναι η μηχανή που χρησιμοποιείται για την ανύψωση ή τον υποβιβασμό της τάσης. Αποτελείται από δύο τυλίγματα ανά φάση, ηλεκτρικά ανεξάρτητα και μαγνητικά συζευγμένα. Το τύλιγμα το οποίο τροφοδοτούμε ονομάζεται πρωτεύον, το δε τύλιγμα από το οποίο παίρνουμε μετασχηματισμένη την τάση ονομάζεται δευτερεύον.

Αν η τάση στο πρωτεύον τύλιγμα είναι U_1, η ένταση του ρεύματος I_1 και ο αριθμός των σπειρών n_1 και τα αντίστοιχα μεγέθη του δευτερεύοντος είναι U_2, I_2, n_2, τότε η παρακάτω σχέση περιγράφει τη σύζευξη μεταξύ των δύο τυλιγμάτων.

$$\frac{U_1}{U_2} = \frac{I_2}{I_1} = \frac{n_1}{n_2} = K$$ \hspace{1cm} (2.7)

Συνήθως στα μικρά υδροηλεκτρικά έργα χρησιμοποιείται μετασχηματιστής ελαίου για την ανύψωση της παραγόμενης τάσης των γεννητριών, η οποία στη συνέχεια θα διοχετευθεί στο δίκτυο μέσω των γραμμών μεταφοράς. Ένας μετασχηματιστής ελαίου αποτελείται από:[18]

Εικόνα 2.20: Μετασχηματιστής ισχύος ελαίου
Το δοχείο διαστολής, σκοπός του οποίου είναι να δέχεται την αύξηση του όγκου του λαδιού στην περίπτωση που υπάρξει μεταβολή της θερμοκρασίας κατά τη λειτουργία του Μ/Σ. Επίσης, στο δοχείο διαστολής είναι τοποθετημένος ένας δείκτης για την απορρόφηση της υγρασίας που δημιουργείται κατά τη διαστολή/συστολή του λαδιού.[20]

Τους μονωτήρες μέσης και υψηλής τάσης που χρησιμεύουν για την ασφαλή διέλευση του ρεύματος.

Το ψυγείο του λαδιού που χρησιμοποιείται για την απαγωγή της αναπτυσσόμενης θερμότητας στα τυλίγματα του μετασχηματιστή λόγω του φαινομένου Joule. Σε μεγάλους μετασχηματιστές ισχύος λαμβάνονται πρόσθετα μέτρα για την απαγωγή της θερμότητας, όπως είναι η εξαναγκασμένη κυκλοφορία αέρα με τη χρήση ανεμιστήρων.[18]

Την ασφαλιστική διάταξη BUCHHOLZ, η οποία τοποθετείται μεταξύ του δοχείου διαστολής και του κυρίως σώματος του μετασχηματιστή και χρησιμοποιείται για την προστασία του από διαρροή λαδιού και υπερθέρμανση.

Σε περίπτωση που υπάρξει διαρροή λαδιού και η στάθμη πέσει κάτω από κάποια τιμή, τότε μέσω του πλωτήρα 1 θα κλείσει μια επαφή του ενεργοποιώντας έναν ηχητικό συναγερμό. Αν η διαρροή συνεχίσει τότε ο μετασχηματιστής θα αρχίσει να υπερθερμαίνεται από έλλειψη λαδιού με αποτέλεσμα το κλείσιμο της επαφής του πλωτήρα 2 και την ενεργοποίηση των αυτόματων διακοπτών που θέτουν εκτός λειτουργίας τον μετασχηματιστή.[18]

2.13 Εξοπλισμός ελέγχου

Ο έλεγχος των εγκατεστημένων στροβίλων γίνεται μέσω ρυθμιστών στροφών, των οποίων η κύρια λειτουργία είναι να συγχρονίζουν την ταχύτητα περιστροφής του στροβίλου με την ταχύτητα της γεννήτριας, ώστε να παράγεται ηλεκτρικό ρεύμα σταθερής συχνότητας. Αυτό επιτυγχάνεται μέσω ενός ανιχνευτή που ανιχνεύει την απόκλιση της ταχύτητας και στη συνέχεια διεγείρει έναν ενεργοποιητή, υδραυλικό ή ηλεκτρικό, ο οποίος ελέγχει είτε την παροχή του στροβίλου είτε του ηλεκτρικού φορτίου. Οι ρυθμιστές ταχύτητας μπορεί να είναι μηχανικοί ή ηλεκτρονικοί. Οι μηχανικοί τύποι αποτελούνται από ένα μηχανισμό βαριδίων σφονδύλων που ελέγχουν ένα σύστημα ελαίου το οποίο ενεργοποιεί τα διαχειριστήρια του συστήματος υδραυλικού ή ηλεκτρικού, ο οποίος ελέγχει είτε την παροχή του στροβίλου είτε του ηλεκτρικού φορτίου.

Οι ρυθμιστές ταχύτητας μπορεί να είναι μηχανικοί ή ηλεκτρονικοί. Οι μηχανικοί τύποι αποτελούνται από ένα μηχανισμό βαριδίων σφονδύλων που ελέγχουν ένα σύστημα ελαίου το οποίο ενεργοποιεί τα διαχειριστήρια της δρομέας. Οι ηλεκτρονικοί ρυθμιστές στροφών ο έλεγχος της ταχύτητας γίνεται με την ενίσχυση της ισχύος που διαθέτουν. Τα πλεονεκτήματα που παρουσιάζουν οι ηλεκτρονικοί τύποι είναι η αξιοπιστία και η ακρίβεια ελέγχου.[9]
2.14 Πίνακας οργάνων και εξοπλισμός διανομής-προστασίας

Ο εξοπλισμός διανομής είναι απαραίτητος για τον έλεγχο των γεννητριών καθώς και για την σύζευξή τους με το δίκτυο. Πρέπει να παρέχει προστασία στις γεννήτριες, στον μετασχηματιστή ισχύος και στον υπηρεσιακό μετασχηματιστή του σταθμού. Ο πίνακας οργάνων του εξοπλισμού διανομής αποτελείται από:

- Έναν αυτόματο διακόπτη για κάθε γεννήτρια.
- Μετασχηματιστές τάσεως και εντάσεως, μετρήσεων και προστασίας.
- Μετρητικά όργανα για κάθε φάση όπως αμπερόμετρα, βολτόμετρα, κιλοβαττόμετρα, όργανα μέτρησης συντελεστή ισχύος.
- Συστοιχία πυκνωτών για διόρθωση του συντελεστή ισχύος για κάθε γεννήτρια.
- Αναχωρήσεις για εσωτερικές καταναλώσεις.[9]
2.15 Αυτόματος Έλεγχος

Τα μικρά υδροηλεκτρικά εργοστάσια συνήθως δεν επιτηρούνται και λειτουργούν μέσω συστήματος αυτόματου ελέγχου. Ένα αυτοματοποιημένο σύστημα μικρού υδροηλεκτρικού σταθμού θα πρέπει να περιλαμβάνει:

- Χειροκίνητους ελεγκτές και μετρητές οι οποίοι θα χρησιμοποιούνται τόσο κατά την αρχική εκκίνηση όσο και σε περιπτώσεις συντηρήσεως της μονάδας.
- Ηλεκτρονόμους και διατάξεις για την ανίχνευση δυσλειτουργιών που εξασφαλίζουν την ασφαλή απενεργοποίηση του σταθμού.
- Σύστημα λήψης και αποθήκευσης δεδομένων λειτουργίας για τη μετέπειτα αξιολόγηση της απόδοσης του σταθμού και για την πρόβλεψη βλαβών λαμβάνοντας τα απαραίτητα προληπτικά μέτρα.
- Δημιουργία ευφυούς συστήματος για τον απομακρυσμένο έλεγχο της λειτουργίας του σταθμού με την προϋπόθεση ασφαλούς διακοπής της λειτουργίας σε περίπτωση δυσλειτουργίας.
- Επικοινωνία του υπάρχοντος σταθμού με άλλες αντίστοιχες μονάδες με σκοπό τη βελτιστοποίηση της λειτουργίας του.[9]
ΚΕΦΑΛΑΙΟ 3ο
ΥΔΡΟΣΤΡΟΒΙΛΟΙ PELTON

3.1 Ιστορική αναδρομή

Ο Lester A. Pelton ήταν Αμερικανός εφευρέτης που ανακάλυψε έναν τύπο υδροστρόβιλου κατάλληλο για μεγάλα ύψη πτώσης και για χαμηλές παροχές νερού. Το 1864 άρχισε να δουλεύει στα ορυχεία χρυσού ως εργάτης στον μύλο. Ήταν εκεί που έκανε την ανακάλυψη και κέρδισε ένα μόνιμο μέρος στη ιστορία της υδροπληκτρικής ενέργειας, παρατηρώντας την αξιοποίηση των υδροτροχών για την παραγωγή μηχανικής ενέργειας και τη χρήση αυτής στη διαδικασία εξόρυξης χρυσού. Η ενέργεια που χρησιμοποιούνταν για την οδήγηση αυτών των τροχών παρέχονταν από ένα πίδακα νερού που χτυπούσε τη βάση του τροχού με επίπεδα πτερύγια. Στη συνέχεια αυτά τα επίπεδα πτερύγια ανακατασκευάστηκαν σε ημισφαιρικά κύπελλα με το νερό να χτυπά το κέντρο του κυπέλλου στον τροχό. Επίσης παρατήρησε ότι ένας από τους τροχούς κινούνταν πιο ταχύτερα από τους άλλους παρόμοιους μηχανών. Αρχικά διαπιστώθηκε ότι ο τροχός είχε χαλαρώσει και είχε μετακινηθεί πάνω στον άξονα του. Το νερό χτυπούσε την εσωτερική άκρη των κύπελλων και εξέρχονταν από την άλλη πλευρά του. Ο Pelton προσπαθούσε να βελτιώσει την εφεύρεση του ανακατασκεύασε τον τροχό τοποθετώντας τα κύπελλα στο κέντρο του τροχού. Επίσης διαπίστωσε ότι η χρήση διαχωρισμένων κυπέλλων ενίσχυε την επίδραση του. Το 1879 είχε δοκιμάσει ένα πρωτότυπο στο Πανεπιστήμιο της Καλιφόρνιας το οποίο ήταν πετυχημένο και το 1880 του απονεμήθηκε το πρώτο δίπλωμα ευρεσιτεχνίας.

Εικόνα 3.1: Πρωτότυπος υδροστρόβιλος Pelton
Μέχρι το 1890 η ιπποδύναμη των υδροστροβίλων Pelton είχε αυξηθεί τροφοδοτώντας με μηχανική ενέργεια διάφορες εφαρμογές. Μετά το θάνατο του Pelton το 1910, οι υδροηλεκτρικοί σταθμοί με ισχύ χιλιάδων βατ παρήγαγαν ηλεκτρική ενέργεια με βαθμό απόδοσης πάνω από 90 %. Ο υδροστροβίλος Pelton θεωρείται ως ο πλέον καταλληλότερος για μεγάλα ύψη πτώσης και για μικρές παροχές νερού σε υδροηλεκτρικά εργοστάσια ανά τον κόσμο.[21]

3.2 Αρχή λειτουργίας

Το νερό της τεχνητής λίμνης εισέρχεται στον αγωγό προσαγωγής και καταλήγει σε ένα ή περισσότερα ακροφύσια. Το ακροφύσιο είναι έτσι κατασκευασμένο ώστε το νερό να εισέρχεται με μεγάλη πίεση και αμελητέα ταχύτητα στη διατομή εισόδου και να εξέρχεται από μικρότερη διατομή εξόδου με πολύ μεγάλη ταχύτητα και μικρή πίεση. Με τον τρόπο αυτό η ενέργεια που είναι εγκλωβισμένη στο νερό λόγω της υψηλής στατικής πίεσης μετατρέπεται σε κινητική ενέργεια. Το νερό εξέρχεται από το ακροφύσιο με μεγάλη ταχύτητα η οποία δίνεται από τον παρακάτω τύπο:

\[V = \sqrt{2 \times g \times H} \] \hspace{1cm} (3.1)

Οπου:

- \(V \): Η ταχύτητα δέσμης του εξερχόμενου νερού σε \(\text{m/s} \)
- \(g \): Η επιτάχυνση της βαρύτητας η οποία ισούται με 9.81 \(\text{m/s}^2 \)
- \(H \): Το ύψος υδατοπτώσης σε \(\text{m} \)

Στην συνέχεια το εξερχόμενο νερό υπό μορφή δέσμης προσπίπτει σε κατάλληλα σχεδιασμένη πτερύγωση η οποία αποτελείται από σχεδιασμένη ματιές απορροφής ή διαχωριζόμενων ματιών απορροφής ή διαχωρισμένης σκαφώδους σκαφίδας ή διαχωρισμένους ματιών απορροφής ή διαχωρισμένης σκαφώδους σκαφίδας. Στην συνέχεια το εξερχόμενο νερό υπό μορφή δέσμης προσπίπτει σε κατάλληλα σχεδιασμένη πτερύγωση η οποία σχηματίζεται από δύο συμμετρικά μέρη. Η πρόστιση του νερού στα σκαφίδια προκαλεί την αλλαγή της διεύθυνσης της ροής του νερού, δημιουργώντας δύναμη κατά την εργανομενική διεύθυνση του υδροτροχού, σύμφωνα με το νόμο της ορμής. Η δύναμη αυτή δημιουργεί ροπή ως προς τον κέντρο του Δρομέα η οποία περιστρέφει τον υδροστρόβιλο με ταχύτητα υποδιπλάσια της ταχύτητας δέσμης νερού. Τέλος, εξερχόμενο νερό από τον υδροστρόβιλο οδηγείται σε κατάλληλα διαμορφωμένη διώρυγα απομάκρυνσης, εκτρέποντας το νερό συνήθως σε κάποια παρακείμενη κοίτη ποταμού. Σε περίπτωση που απαιτηθεί γρήγορη αποσύνδεση του ηλεκτρικού φορτίου από το σύστημα (ο απότομος χειρισμός φραγής του ακροφύσιου) αποφεύγεται μέσω της βελονοειδούς βαλβίδας που διαθέτει για τη μη δημιουργία ισχυρού υδραυλικού πλήγματος. Η αποσύνδεση του φορτίου γίνεται με εκτροπή της δέσμης αμέσως μετά την εξόδο της από το ακροφύσιο έτσι ώστε να μην προσβάλει την πτερύγωση του στροβίλου. Στην συνέχεια γίνεται σταδιακή μείωση της παροχής μέσω της μετακίνησης της βελόνης μέχρι να γίνει φραγή του ακροφύσιου έτσι ώστε το υδραυλικό πλήγμα που θα δημιουργηθεί να είναι σε αποδεκτές τιμές πιέσεων για το σύστημα προσαγωγής του νερού.[22]
3.3 Κύρια μέρη υδροστρόβιλου Pelton

Στην παρούσα ενότητα παρουσιάζονται λεπτομερώς τα κύρια μέρη από τα οποία αποτελείται ένας υδροστρόβιλος τύπου Pelton και τα οποία συνοψίζουμε ως εξής:

- Ακροφύσιο
- Ο δρομέας και τα σκαφίδια
- Το περίβλημα
- Το υδραυλικό φρένο
- Ο αυτόματος έλεγχος υδροστρόβιλου Pelton

Ακροφύσιο.

Το ακροφύσιο είναι μια συγκλίνουσα σωληνοειδούς μορφής συσκευή στην οποία το νερό εισέρχεται με μεγάλη πίεση και μεγάλη ταχύτητα και εξέρχεται από μικρότερη διατομή εξόδου με μικρή πίεση και μεγάλη ταχύτητα. Ο έλεγχος της παροχής του ακροφύσιο μπορεί να ρυθμίζεται εύκολα στην επιθυμητή τιμή υδραυλικά ή μηχανικά. Η οπή του άκρου του ακροφύσιου είναι έτσι διαμορφωμένη ώστε να επιτρέπει την κίνηση κονικής βελόνης που μεταβάλλει την παροχή του ακροφύσιου η οποία δίνεται από τον παρακάτω τύπο:

\[Q = \frac{z\pi d^2}{4} * V = \frac{z\pi d^2}{4} * \sqrt{2gH} \] \hspace{1cm} (3.2)

Οπου:

- \(Q \): Η παροχή του νερού σε \(m^3/s \)
- \(z \): Αριθμός ακροφυσίων
- \(d \): Η διάμετρος δέσμης του νερού σε \(mm \)
- \(V \): Η ταχύτητα δέσμης του εξερχόμενο νερού σε \(m/s \)

Η όλη κατασκευή του ακροφύσιου είναι υψηλής μηχανικής αντοχής λόγω της υψηλής στατικής πίεσης πριν τη στένωση της διατομής του ακροφύσιού και των υψηλών ταχυτήτων του νερού στη διατομή εξόδου του.[22]

Ο δρομέας και τα σκαφίδια.

Ο δρομέας Pelton αποτελείται περιμετρικά από ημισφαιρικά σκαφίδια τα οποία διαχωρίζονται με μεταλλικό διαχωριστικό (splitter) σε δύο συμμετρικά μέρη. Μέσω του διαχωριστικού η δέσμη του νερού διαιρείται σε δύο ίσα μέρη, με το καθένα από αυτά να αναστρέφεται κατά 160° -170°. Ο διαχωρισμός της δέσμης γίνεται για λόγους συμμετρίας στη φόρτιση των σκαφιδίων και για να μη αναπτύσσονται ροπές στον άξονα της πτερωτής. Η διάμετρος \(d \) της δέσμης του νερού υπολογίζεται, αν είναι γνωστή η παροχή \(Q \) του νερού, ως εξής:

\[d = \sqrt[4]{\frac{4Q}{z\pi \sqrt{2gH}}} \] \hspace{1cm} (3.3)

46
Τα σκαφίδια ανάλογα με το συνολικό μανομετρικό ύψος και τον κίνδυνο διάβρωσης κατασκευάζονται από χρυσομίδρο ή από ανοξείδωτο χάλυβα. Το πλήθος τους κυμαίνεται συνήθως μεταξύ 20-22. Το δε πλάτος των σκαφιδίων, B, εξαρτάται από τη διάμετρο της δέσμης του ρευστού με τη συσχέτιση των δύο μεγεθών να μεταβάλλεται ανάλογα με το πλήθος των ακροφυσίων ως εξής:

- B=3.1d για 1 ακροφύσιο
- B=3.2d για 2 ακροφύσια
- B=3.3d για 4 μέχρι 5 ακροφύσια
- B=3.4d για 6 ακροφύσια

Η διάμετρος της πτερωτής, D, επιλέγεται με εμπειρικό τρόπο με της σχέσης D = (12-15)*d, με τις μεγάλες τιμές του πρώτου παράγοντα να σχετίζονται με μεγάλα ύψη υδατόπτωσης.[22]

Τέλος, ανάλογα με τη θέση του δρομέα διακρίνονται δύο σχηματισμοί υδροστροβίλων:

Υδροστρόβιλοι με οριζόντιο δρομέα

Οι υδροστρόβιλοι αυτοί αποτελούνται από δύο δρομείς που είναι τοποθετημένα στα δύο άκρα του υδροστροβίλου. Ο μέγιστος αριθμός ακροφυσίων εκροής σε αυτό τον τύπο υδροστροβίλου είναι 2 ανά δρομέα.[23]
Υδροστρόβιλοι με κατακόρυφο δρόμεα

Στην περίπτωση που ο δρόμεας διατάσσεται κατακόρυφα, τότε το στροφείο του στροβίλου είναι οριζόντιο, και όλα τα ακροφύσιά βρίσκονται στην ίδια επιφάνεια με αυτό. Με αυτό τον τρόπο δεν επηρεάζεται η λειτουργία των ακροφυσίων από το νερό που απομακρύνεται μετά την πρόσκρουση στα σκαφίδια. Ο μέγιστος αριθμός των ακροφυσίων που χρησιμοποιούνται σε αυτή την διάταξη είναι 6.[22] [23]

Εικόνα 3.4: Υδροστρόβιλος Pelton με κατακόρυφο δρόμεα

Υδραυλικό φρένο.

Το υδραυλικό φρένο αποτελείται από ένα μικρό ακροφύσιο στο οποίο εξέρχεται μια δέσμη νερού και προσκρούει στην πίσω πλευρά των σκαφιδίων βοηθώντας στο γρήγορο σταμάτημα του υδροστροβίλου. Έτσι σε περίπτωση που απαιτηθεί να σταματήσει ο υδροστρόβιλος θα κλείσει πρώτα η βαλβίδα εισόδου εμποδίζοντας τη δέσμη του νερού να προσκρούσει στα σκαφίδια και στη συνέχεια με τη βοήθεια του υδραυλικού φρένου ακινητοποιείται ο υδροστρόβιλος.[23]

Το περίβλημα

Το περίβλημα του υδροστροβίλου δεν συμμετέχει σε κάποια υδραυλική λειτουργία αλλά καλύπτει το στροφείο, αποτρέπει το νερό να χύνεται στον περιβάλλοντα χώρο και συγκεντρώνει το νερό που εξέρχεται από το στροφείο, οδηγώντας το στη διώρυγα φυγής.[22]

Ο αυτόματος έλεγχος υδροστροβίλου Pelton

Ο έλεγχος λειτουργίας ενός υδροηλεκτρικού σταθμού πραγματοποιείται μέσω ενός αυτόματου συστήματος ελέγχου που σκοπό έχει να ελέγχει την έναρξη ή παύση λειτουργίας του σταθμού, τη μεταβολή της ισχύος ανάλογα με το φορτίο και την παροχή. Επίσης, ο έλεγχος περιλαμβάνει τον άριστο καταμερισμό του φορτίου καθώς και την έγκαιρη ακινητοποίηση των υδροστροβίλων σε περίπτωση που υπάρχει υπερθέρμανση των στροφείων ή ελαττωματική λειτουργία λίπανσης της μηχανής.[23]
3.4 Πλεονεκτήματα-μειονεκτήματα υδροστροβίλου Pelton

Οι υδροστροβίλοι Pelton είναι πιο ανταγωνιστικοί σε σχέση με άλλους υδροστροβίλους διότι παρουσιάζουν τα παρακάτω πλεονεκτήματα:

- Οι μηχανές αυτές τόσο κατασκευαστικά όσο και λειτουργικά είναι απλές και δεν απαιτούν συντήρηση σε σύντομα χρονικά διαστήματα.
- Έχουν υψηλή απόδοση φορτίου και μπορούν να ανταπεξέλθουν σε σημαντικές μεταβολές που συνήθως συμβαίνουν σε μικρούς υδροηλεκτρικούς σταθμούς.
- Ο υδροστροβίλος Pelton για υψηλό υδραυλικό ύψος είναι ο πιο αποδοτικός από τους υδροστροβίλους πρόσπτωσης για δεδομένο ύψος και ισχύ.
- Καλύπτει ένα μεγάλο εύρος εφαρμογών για ύψη πτώσης από 2-200 m.
- Η εγκατάστασή τους μπορεί να γίνει σε περιορισμένο χώρο.[5]

Εκτός από τα πλεονεκτήματα, οι υδροστροβίλοι Pelton παρουσιάζουν και μειονεκτήματα όπως:

- Στις περισσότερες περιπτώσεις, απαιτούνται μεγάλα ύψη πτώσης (άνω των 100 m) για την παραγωγή ηλεκτρικής ενέργειας.
- Υψηλότερο κόστος κατασκευής του υδροηλεκτρικού διότι χρειάζονται πρόσθετα έργα κατασκευής καθώς οι αγωγοί προσαγωγής ακολουθούν το ανάγλυφο του εδάφους από την τεχνητή λίμνη μέχρι τον σταθμό παραγωγής.
- Κατάλληλο φιλτράρισμα του νερού για την αποφυγή μηχανικής διάβρωσης από στερεά σωματίδια ή άμμο που προσβάλλουν τόσο τα ακροφύσια όσο και τα πτερύγια.[22]

3.5 Ισχύς υδροστροβίλου

Η αξιολόγηση της υποψήφιας θέσης κατασκευής μικρού υδροηλεκτρικού σταθμού γίνεται σύμφωνα με την υδροδυναμική ισχύ, από την οποία προσδιορίζεται το μέγιστο ποσό ισχύς που μπορεί να αξιοποιηθεί από το μικρό υδροηλεκτρικό σταθμό και το οποίο ορίζεται από την παρακάτω σχέση.[24]

\[
P_h = \gamma * Q * H
\]

(3.4)

\(P_h \): Είναι η υδροδυναμική ισχύς σε (W)
\(\gamma \): Το ειδικό βάρος ύδατος, το οποίο είναι το γινόμενο της μάζας του επί την επιτάχυνση της βαρύτητας (9,81 N/m\(^3\))
\(Q \): Η παροχή ύδατος (m\(^3\)/sec)
\(H \): Το ολικό ύψος υδατόπτωσης (m)

Αντικαθιστώντας το ειδικό βάρος ύδατος με την ισοδύναμη τιμή του η παραπάνω σχέση παίρνει την ακόλουθη μορφή:

...
\[P_h = g \times p \times Q \times H \] \hspace{1cm} (3.5)

\(P_h \): Είναι η υδροδυναμική ισχύς σε (W)
\(g \): Η επιτάχυνση της βαρύτητας (9,81 m/sec^2)
\(p \): Η πυκνότητα ύδατος (1000 kg/m^3)
\(Q \): Η παροχή ύδατος (m^3/sec)
\(H \): Το ολικό ύψος υδατόπτωσης (m)

Επομένως στην περίπτωση του ύδατος η παραπάνω σχέση γίνεται:
\[P_h = 9,81 \times Q \times H \] \hspace{1cm} (3.6)

Η τιμή της επιτάχυνσης της βαρύτητας \(g \) παρουσιάζει μεταβολές ανάλογα με το υψόμετρο της εξεταζόμενης τοποθεσίας, με αποτέλεσμα να μειώνεται κατά \(0,31 \text{ cm/sec}^2 \) κάθε \(1000 \text{ m πάνω από την επιφάνεια της θάλασσας}. \)

Κατά την κατασκευή μικρού υδροηλεκτρικού η υδροδυναμική ισχύς παρουσιάζει απώλειες οι οποίες προέρχονται από την τριβή του νερού μέσω των αγωγών, το ύψος υδατόπτωσης, και τις απώλειες του υδροστροβίλου. Επομένως η μηχανική ισχύς η οποία προκύπτει στο άξονα της γεννήτριας προσδιορίζεται σύμφωνα με την παρακάτω σχέση:[24]
\[P_m = \frac{9,81}{1000} \times p \times Q \times H \times n_c \approx 9,804 \times Q \times H \times n \] \hspace{1cm} (3.7)

\(P_m \): Η μηχανική ισχύς σε (W)
\(p \): Είναι η πυκνότητα ύδατος (1000 kg/m^3)
\(Q \): Η παροχή ύδατος (m^3/sec)
\(H \): Το ολικό ύψος που αντιστοιχεί στο στατικό ύψος (\(H_{sta} \))
\(n_c \): Ο συνολικός βαθμός απόδοσης του υδροστροβίλου

Γι’αυτούς από μελέτες που έχουν πραγματοποιηθεί έχει αποδειχθεί ότι το ύψος υδατόπτωσης που χρησιμοποιείται από τον υδροστροβίλο είναι το στατικό ύψος το οποίο διαφέρει από το καθαρό ύψος ως προς τις απώλειες του αγωγού φυγής οι οποίες συμπεριλαμβάνονται στον βαθμό απόδοσης του υδροστροβίλου. Επομένως το καθαρό ύψος υδατόπτωσης χρησιμοποιείται για τον έλεγχο του βαθμού απόδοσης του υδροστροβίλου ο οποίος καθορίζεται από τα στοιχεία του κατασκευαστή. Επίσης ο υπολογισμός της μηχανικής ισχύς γίνεται σύμφωνα με την επιλεγόμενη παροχή λειτουργίας υδροστροβίλου, ενώ για την βέλτιστη απόδοση λειτουργίας του υδροστροβίλου προτιμάται μεγαλύτερο ύψος υδατόπτωσης και μικρότερη ροή ύδατος.[24]
3.6 Βαθμοί απόδοσης

Κατά την λειτουργία υδροστροβίλου δημιουργούνται απώλειες οι οποίες έχουν σαν αποτέλεσμα να αξιοποιείται μόνο ένα μέρος της διαθέσιμης υδραυλικής ενέργειας. Επομένως, η παραγόμενη μηχανική ισχύς του υδροστροβίλου \(N = M \times \omega \), είναι μικρότερη από τη διαθέσιμη υδραυλική ισχύ \(N_i \) με τη διαφορά \((N_i - N) \) να είναι ίση με το άθροισμα των διάφορων απώλειών οι οποίες διακρίνονται σε:

- υδραυλικές
- ογκομετρικές
- μηχανικές

Έτσι ο συνολικός βαθμός απόδοσης του υδροστροβίλου θα εξαρτάται από τους επιμέρους βαθμούς απόδοσης των παραπάνω κατηγοριών.[25]

Υδραυλική απόδοση

Υδραυλική απόδοση ονομάζεται ο λόγος του ύψους υδατόπτωσης που αξιοποιείται από τον υδροστρόβιλο προς το καθαρό ύψος. Επίσης μπορεί να οριστεί ως ο λόγος του καθαρού ύψους πτώσης προς το ολικό ύψος υδατόπτωσης που προκύπτει από τις απώλειες πίεσης που οφείλονται σε τριβή και σε τυρβώδη ροή. Επομένως ο υδραυλικός βαθμός ισούται με:

\[
h_h = \frac{h_u}{h_{net}} = \frac{h_{net}}{h_{gross}}\]

όπου:

- \(h_u \): Το αξιοποιήσιμο ύψος υδατόπτωσης από τον υδροστρόβιλο
- \(h_{net} \): Το καθαρό ύψος υδατόπτωσης
- \(h_{gross} \): Το ολικό ύψος υδατόπτωσης.[25]

Ογκομετρική απόδοση

Ογκομετρική απόδοση ονομάζεται ο λόγος της παροχής που αξιοποιείται από τον υδροστρόβιλο προς την αντίστοιχη παροχή η οποία διέρχεται από τον υδροστρόβιλο και δίνεται από την παρακάτω σχέση:

\[
n_v = \frac{\frac{Q-Q_L}{Q}}\]

όπου:

- \(Q \): Η συνολική παροχή που τροφοδοτεί τον υδροστρόβιλο
- \(Q_L \): Η παροχή η οποία απομακρύνεται από τον υδροστρόβιλο και δεν αξιοποιείται για την παραγωγή μηχανικής ισχύς.
• Μηχανική απόδοση

Μηχανική απόδοση ονομάζεται ο λόγος της διαθέσιμης ισχύος στον άξονα του υδροστροβίλου προς το άθροισμα αυτής με τις απώλειες ισχύος που οφείλονται στην μηχανική τριβή και δίνεται από τη σχέση:

\[n_m = \frac{b_p}{b_p + f_p} \quad (3.10) \]

Οπου:

\[b_p \text{: Η διαθέσιμη ισχύς πέδης στον άξονα} \]
\[f_p \text{: Οι απώλειες ισχύος που οφείλονται στην μηχανική τριβή} \]

Επομένως, η συνολική απόδοση είναι ο λόγος της ισχύος που παρέχεται από τον υδροστρόβιλο προς την υδραυλική ισχύ που απορροφά ο υδροστρόβιλος. Η συνολική απόδοση δίνεται από τον παρακάτω τύπο:

\[n = \frac{\rho_{\text{max}}}{\rho_{\text{v}} \delta} \quad (3.11) \]

Επίσης η συνολική απόδοση δίνεται και από το γινόμενο των παραπάνω βαθμών απόδοσης:[25]

\[n = n_h * n_{\text{f}} * n_m \quad (3.12) \]

Εικόνα 3.5: Καμπύλες απόδοσης διαφόρων τύπων υδροστροβίλων
3.7 Ειδική ταχύτητα υδροστροβίλου

Η επιλογή ενός υδροστροβίλου γίνεται σύμφωνα με την ειδική ταχύτητα περιστροφής η οποία θεωρείται πιο αξιόπιστο κριτήριο σε σχέση με τα διαγράμματα εύρους ύψους υδατόπτωσης συναρτήσει της παροχής ύδατος.

Η σύγκριση μηχανών διαφόρων μεγεθών όσον αφορά την ταχύτητα περιστροφής τους γίνεται σύμφωνα με την ειδική ταχύτητα περιστροφής. Ως ειδική ταχύτητα υδροστροβίλου ορίζεται η περιστροφική ταχύτητα υδροστροβίλου κατάλληλου μεγέθους ώστε να παράγει ισχύ 1 ΗΡ αξιοποιώντας ύψος υδατόπτωσης 1 ft και δίνεται από την παρακάτω σχέση:[25]

\[n_t = n \frac{P_{(HP)}}{H_{\sqrt{ft}}} \] \hspace{1cm} (3.13)

Όπου

\(n_t \): Η ειδική ταχύτητα του υδροστροβίλου σε rpm

\(n \): Η ταχύτητα περιστροφής του υδροστροβίλου σε rpm

\(P \): Η μηχανική ισχύς του υδροστροβίλου σε (HP)

\(H \): Το καθαρό ύψος υδατόπτωσης σε (ft)

Εφόσον η μηχανική ισχύς δίνεται σε kW και το ύψος υδατόπτωσης σε m η παραπάνω σχέση παίρνει την ακόλουθη μορφή:

\[n_t = \frac{1}{3,915} n \sqrt{\frac{P_{(KW)}}{H_{\sqrt{m}}}} \] \hspace{1cm} (3.14)

Η ταχύτητα περιστροφής του υδροστροβίλου η προκύπτει από τη σύγχρονη ταχύτητα της γεννήτριας \(n_s \), η οποία δίνεται από την παρακάτω σχέση:

\[n_s = \frac{60 \cdot f}{p} \] \hspace{1cm} (3.15)

Όπου

\(f \): Η συχνότητα της παραγόμενης ηλεκτρικής ενέργειας σε (Hz)

\(p \): Το ζεύγος πόλων της γεννήτριας

Η ταχύτητα περιστροφής του υδροστροβίλου ισούται με τον λόγο της ταχύτητας της γεννήτριας προς τον αριθμό των πολλαπλασιαστή στροφών εφόσον χρησιμοποιείται για την σύνδεση υδροστροβίλου γεννήτριας. Επομένως, η ταχύτητα περιστροφής του υδροστροβίλου η υπολογίζεται σύμφωνα με την παρακάτω σχέση:[25]

\[n = \frac{n_s}{a} \] \hspace{1cm} (3.16)
Όπου

\(n_e \): Η ταχύτητα περιστροφής της γεννήτριας σε rpm

\(a \): Ο αριθμός του πολλαπλασιαστή στροφών

Η ειδική ταχύτητα είναι αντιστρόφως ανάλογη με το ύψος υδατόπτωσης. Επομένως για υδροπηλεκτρικές εγκαταστάσεις που το ύψος υδατόπτωσης είναι μικρό θα πρέπει να επιλέγονται υδροστροβίλοι με μεγάλη ειδική ταχύτητα, ενώ αντιθέτως για μεγάλα ύψη υδατόπτωσης θα πρέπει να επιλέγονται υδροστροβίλοι με μικρή ειδική ταχύτητα. Τέλος, οι υδροστροβίλοι Pelton χαρακτηρίζονται από μικρή ειδική ταχύτητα όπως φαίνεται και στον παρακάτω πίνακα των διαφόρων τύπων υδροστροβίλων.[25]

Πίνακας 3-1:Εύρος ειδικής ταχύτητας και ύψους υδατόπτωσης για διαφορετικούς τύπους υδροστροβίλων

<table>
<thead>
<tr>
<th>Τύπος Υδροστροβίλου</th>
<th>Εύρος ειδικής ταχύτητας (rpm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Kaplan</td>
<td>300-1200</td>
</tr>
<tr>
<td>Francis</td>
<td>55-5000</td>
</tr>
<tr>
<td>Pelton</td>
<td>1-31</td>
</tr>
<tr>
<td>Cross-flow</td>
<td>1-300</td>
</tr>
</tbody>
</table>
ΚΕΦΑΛΑΙΟ 4ο
ΣΤΑΔΙΑ ΜΕΛΕΤΗΣ ΚΑΙ ΔΙΑΔΙΚΑΣΙΕΣ ΑΔΕΙΟΔΟΤΗΣΗΣ ΜΙΚΡΟΥ ΥΗΕ

4.1 Στάδια της μελέτης μικρού ΥΗΕ

Μια μελέτη μικρού υδροηλεκτρικού σταθμού ξεκινάει από την κατάλληλη επιλογή της θέσεως μέχρι τη μελέτη εφαρμογής και τη σύνταξη των τευχών δημοπράτησης. Το πόσο μεγάλη και λεπτομερής θα είναι μια μελέτη εξαρτάται από διάφορους παράγοντες, όπως είναι η μορφολογία του εδάφους σε ορεινό μέρος όπου και απαιτούνται πρόσθετα έργα, καθώς και πόσο μεγάλος θα είναι ο υδροηλεκτρικός σταθμός που θα κατασκευαστεί. Συνήθως μια μελέτη μικρού υδροηλεκτρικού σταθμού χωρίζεται σε τρία στάδια:

- Αναγνωριστική μελέτη
- Προκαταρτική μελέτη
- Μελέτη εφαρμογής.[26]

4.1.1 Αναγνωριστική μελέτη μικρού ΥΗΕ

Η αναγνωριστική μελέτη είναι το πρώτο στάδιο μιας μελέτης μικρού υδροηλεκτρικού έργου και σκοπό της είναι να αξιολογήσει την (οικονομική βιωσιμότητα) της προτεινόμενης θέσης. Επίσης, η αναγνωριστική μελέτη πραγματοποιείται σε περισσότερες προτεινόμενες θέσεις, οι οποίες στη συνέχεια κατατάσσονται ανάλογα με την παραγόμενη ενέργεια και το ύψος επένδυσης, ώστε να επιλεγεί η βέλτιστη θέση.

Πριν την αναγνωριστική μελέτη θα πρέπει να εξεταστεί αν κατά το παρελθόν έχει γίνει μελέτη χωρίς να έχει πραγματοποιηθεί το έργο καθώς και αν έχει εκδοθεί άδεια και από άλλα ενδιαφερόμενα για τη συγκεκριμένη θέση. Τέλος, η αναγνωριστική μελέτη πραγματοποιείται με συλλογή υπαρχόντων στοιχείων και τη χρονική διάρκεια εκτέλεση της είναι 1 με 2 μήνες.[26]

Τα βήματα της αναγνωριστικής μελέτης είναι:

- Αναγνώριση της περιοχής. Η αναγνώριση περιλαμβάνει τη χωροθέτηση του έργου, τη καταγραφή τοπικών συνθηκών, των δυσκολιών της τοποθεσίας καθώς και της χρήσης του νερού. Επίσης γίνεται η χάραξη του έργου σε γεωγραφικό χαρτί σε κλίμακα 1:50000 και 1:5000 από το οποίο προκύπτουν η υδραυλική πτώση και το μήκος των έργων προσαγωγής.

- Συλλογή υπαρχόντων υδραυλικών στοιχείων. Αξιολογούνται υπάρχοντα υδραυλικά στοιχεία και στην περίπτωση έλλειψης αυτών γίνεται προσεγγιστική εκτίμηση από
γειτονικές λεκάνες απορροής. Επίσης υπολογίζονται η μέγιστη πλημμυρική παροχή και η ελάχιστη παροχή υδατορεύματος.

- Προκαταρτική χάραξη του έργου. Η χάραξη αυτή πραγματοποιείται ώστε να βρεθεί η συντομότερη γραμμή μέσης τάσης στην οποία θα μπορούσε να συνδεθεί ο υδροηλεκτρικός σταθμός.

- Υπολογισμός της παραγόμενης ενέργειας. Ο υπολογισμός της παραγόμενης ενέργειας γίνεται ώστε να διαπιστωθεί ο απαιτούμενος αριθμός υδροστροβίλων. Επίσης για μικρά υδροηλεκτρικά που τροφοδοτούν αυτόνομο δίκτυο θα πρέπει να προβλεφθούν και εναλλακτικοί τρόποι παραγωγής ηλεκτρικής ενέργειας καθώς τα πρώτα χρόνια λειτουργίας λόγω μικρής ζήτησης δεν θα έχει τη δυνατότητα να παράσχει την παραγόμενη ενέργεια.

- Υπολογισμός του κόστους της επένδυσης. Ο υπολογισμός αυτός γίνεται για διάφορες τιμές της ονομαστικής παροχής και με στοιχεία από παρόμοια έργα τα οποία έχουν ολοκληρωθεί.

- Επαναληπτική διαδικασία. Είναι η διαδικασία στην οποία επαναλαμβάνονται τα δύο προηγούμενα βήματα για διάφορες τιμές της ονομαστικής παροχής ώστε να διαπιστωθεί η βέλτιστη τιμή αυτής και άρα η βέλτιστη εγκατεστημένη ισχύ.

- Προτάσεις χρηματοδότης του έργου. Σε αυτό το βήμα εξετάζονται οι τρόποι χρηματοδότησης του έργου, η οποία θα μπορούσε να προέρχεται από ιδιωτική επένδυση ή μέσω ευρωπαϊκών προγραμμάτων.

- Καταγραφή των περιβαλλοντικών επιπτώσεων. Η καταγραφή των περιβαλλοντικών επιπτώσεων σχετίζεται με τη λειτουργία των οικοσυστημάτων και τη ρύπανση. Γενικότερα όμως μπορούν να αναφέρονται σε θέματα αισθητικά, πολιτιστικά, κοινωνικά ή οικονομικά.

- Σύνταξη αναγνωριστικής φάσης. Στην έκθεση αυτή αναλύονται τα στοιχεία των προηγούμενων βημάτων με μεγαλύτερο ενδιαφέρον, τα τεχνοοικονομικά στοιχεία καθώς και τα στοιχεία που απαιτούν περισσότερη διερεύνηση. Τέλος, η έκθεση γνωμοδοτεί θετικά ή αρνητικά για τη μετάβαση στο επόμενο στάδιο της μελέτης που είναι η προκαταρτική μελέτη.[26]

4.1.2 Προκαταρτική μελέτη μικρού ΥΗΕ

Η προκαταρτική μελέτη πραγματοποιείται ώστε να επιλεγεί η πιο καλή διάταξη από οικονομικής πλευράς. Επίσης περιλαμβάνει τη διαστασιολόγηση των επι μέρους έργων και εξοπλισμού όπως θα προκύψουν μετά από αναλυτική εξέταση διαφορετικών εναλλακτικών λύσεων. Τέλος, η
προκαταρτική μελέτη ολοκληρώνεται με αναλυτική χρηματοδοτική ανάλυση των τεχνικοεικονομικών παραμέτρων με τη χρονική διάρκεια εκτέλεση της να είναι 6 μήνες.

Τα βήματα της προκαταρτικής μελέτης είναι:

- Επαναπροσδιορισμός της διάταξης του έργου. Στη φάση αυτή μπορεί να προκύψει μια μικρή μετατόπιση των δομικών έργων, όπως της υδροληψίας, της δεξαμενής φόρτισης ή της θέσεως του ΥΗΕ σε σχέση με την προηγούμενη φάση ώστε να αυξηθεί η ασφάλεια ή να μειωθεί το κόστος κατασκευής.

- Καταγραφή των συνθηκών της περιοχής. Στη φάση αυτή γίνεται τοπογραφική αποτύπωση ώστε να καθοριστεί η χωροθέτηση των έργων. Η τοπογραφική αποτύπωση πραγματοποιείται σε μια έκταση πλάτους 200 μέτρων γύρω από τον άξονα του έργου και από την οποία θα προκύψουν τα ακριβή μήκη των έργων προσαγωγής καθώς και η ακριβής τιμή της υδραυλικής πτώσης. Μετά το τέλος της τοπογραφικής αποτύπωσης γίνονται διάφορες τροποποιήσεις και τελικά χαράσσουν τα έργα προσαγωγής. Τέλος, γίνεται επεξεργασία υπαρχόντων γεωλογικών στοιχείων και αν απαιτηθεί πραγματοποιούνται γεωλογικές μελέτες.

- Συμπλήρωση και επιβεβαίωση των υδρολογικών στοιχείων. Τα υδρολογικά στοιχεία συμπληρώνονται με δειγματοληπτικές μετρήσεις που άρχισαν να διεξάγονται είτε με την έναρξη της προκαταρτικής φάσεως είτε με την εφαρμογή υδρολογικών μοντέλων που συσχετίζονται με βροχοπτώσεις ή υδρολογικά στοιχεία γειτονικής λεκάνης απορροής παρόμοιας με την εξετάζομενη. Επίσης υπολογίζεται η πλημμυρική παροχή και αντίστοιχη στάθμη του ποταμού στην περιοχή του ΥΗΕ ώστε να μη κινδυνεύουν τα έργα και ο εξοπλισμός. Επιπλέον υπολογίζεται η ενέργεια παροχής κατά τη διάρκεια της φάσης προκαταρτικής και αντίστοιχη στάθμη του ποταμού στην περιοχή του ΥΗΕ ώστε να μην κινδυνεύουν τα έργα και ο εξοπλισμός. Επιπλέον υπολογίζεται η επιλογή τύπου του υδροστροβίλου και της καμπύλης του βαθμού απόδοσης, επιλέγεται ο τύπος και η ταχύτητα περιστροφής της γεννήτριας.

- Διάταξη και διαστασιολόγηση του έργου. Μετά τη χάραξη του έργου πρέπει να καθοριστεί η υλομοσιακή παροχή λειτουργίας από την οποία θα προκύψει η εγκατεστημένη ισχύς. Έτσι επιλέγονται κάποιες τιμές της υλομοσιακής παροχής οι οποίες έχουν προκύψει από την αναγνωρισθεί μελέτη για κάθε τιμή της υλομοσιακής παροχής διαστασιολογείται η διώρυγα, ο αγωγός προσαγωγής, υπολογίζεται η υδραυλική πτώση και επιλέγεται ο τύπος του υδροστροβίλου. Από την επιλογή του τύπου του υδροστροβίλου εκτιμάται η καμπύλη του βαθμού απόδοσης, η ταχύτητα περιστροφής του δρομέα και επιλέγεται ο τύπος και η ταχύτητα περιστροφής της γεννήτριας.

- Υπολογισμός της παραγόμενης ενέργειας. Σύμφωνα με τα προηγούμενα βήματα και με τη χρήση υδρολογικών στοιχείων υπολογίζεται η παραγόμενη ηλεκτρική ενέργεια.

- Εκτίμηση του κόστους του έργου. Σε αυτή τη φάση γίνεται υπολογισμός του συνολικού κόστους του έργου όπως έχει προκύψει μετά τη διαστασιολόγηση των επί μέρους έργων (υδροληψία, εκβιομηχανικός, εργα προσαγωγής, ηλεκτρομηχανολογικός)
εξοπλισμός). Επίσης περιλαμβάνεται και το κόστος σύνδεσης του ΥΗΕ με το δίκτυο μέσης τάσης καθώς και το κόστος ελαχιστοποίησης δυσμενών περιβαλλοντικών επιπτώσεων.[26]

- **Οικονομική ανάλυση.** Για κάθε μία από τις υποψήφιες θέσεις θα πρέπει να γίνει οικονομική ανάλυση βιωσιμότητας και έλεγχος της οικονομικής ευαισθησίας της επένδυσης από την οποία θα προκύψει η καταλληλότερη θέση από πλευράς ονομαστικής παροχής, υδραυλικής πτώσης, τύπου και πλήθους υδροστροβίλων, για τα οποία η καθαρή παρούσα αξία ή άλλοι δείκτες οικονομικής απόδοσης της επένδυσης γίνονται μέγιστοι.

- **Οριστικοποίηση της διάταξης.** Μετά την επιλογή της καλύτερης λύσης οριστικοποιούνται τα μέγεθος των έργων τα οποία στη συνέχεια αποτυπώνονται σε σχέδια.

- **Λεπτομερής ανάλυση του κόστους.** Γίνεται λεπτομερής εκτίμηση του κόστους όλων των επι μέρους έργων και καθορίζονται οι τρόποι χρηματοδότησης του έργου.

- **Σύνταξη χρονοδιαγράμματος.** Δημιουργείται χρονοδιάγραμμα εργασιών στο οποίο θα πρέπει να ληφθούν υπόψη και οι καιρικές συνθήκες που επικρατούν στην περιοχή ώστε να μπορούν υλοποιηθούν τα έργα κατά τους χειμερινούς μήνες.

- **Σύνταξη προκαταρτικής μελέτης.** Συντάσσεται έκθεση προκαταρτικής μελέτης η οποία περιλαμβάνει τεχνικά σχέδια, υπολογισμούς και αναλύσεις και από την οποία θα πρέπει να προκύπτει ότι το έργο είναι οικονομικά βιώσιμο σύμφωνα και με την αναγνωριστική μελέτη.[26]

4.1.3 **Μελέτη εφαρμογής μικρού ΥΗΕ**

Η μελέτη εφαρμογής έχει σαν σκοπό τη σύνταξη των τελικών σχεδίων καθώς και τον καθορισμό των προδιαγραφών κατασκευής και εγκατάστασης του ηλεκτρομηχανολογικού εξοπλισμού σύμφωνα με τα οποία ο ανάδοχος θα κατασκευάσει και θα θέσει σε λειτουργία τον υδροηλεκτρικό σταθμό. Τέλος, η μελέτη εφαρμογής ολοκληρώνεται με την σύνταξη των τευχών δημοπράτησης βάσει των οποίων θα κατατεθούν οι προσφορές και από τις οποίες θα επιλεγεί ο ανάδοχος του έργου. Η χρονική διάρκεια εκτέλεση της είναι από 6 έως 24 μήνες.[26][27]

Μετά την ολοκλήρωση της μελέτης εφαρμογής παραδίδονται τα αναλυτικά σχέδια, τα τεύχη υπολογισμού (στατικών, γεωστατικών, ηλεκτρομηχανολογικών, υδραυλικών), το χρονοδιάγραμμα των εργασιών για κάθε φάση του έργου, τα τεύχη κατασκευής, προμήθειας και εγκατάστασης του εξοπλισμού, η διαδικασία λειτουργίας και δόκιμων παραλαβής του έργου, το τεύχος της προμέτρησης των υλικών και εργασιών του προϋπολογισμού.[27]
4.2 Μελέτη Περιβαλλοντικών Επιπτώσεων

Μια περιβαλλοντική μελέτη πραγματοποιείται με σκοπό να επισημάνει τις πιθανές επιπτώσεις κατά την κατασκευή και τη λειτουργία ενός μικρού υδροελεκτρικού εργοστασίου, έτσι ώστε να παρθούν τα απαραίτητα μέτρα για την αποφυγή αυτών.

Σε μια περιβαλλοντική μελέτη μελετώνται οι επιβαρύνσεις στο περιβάλλον που προκύπτουν κατά τα στάδια κατασκευής του έργου και οι οποίες οφείλονται σε:

- Έργα υδροληψίας στην κοίτη του ποταμού
- Εγκατάσταση του αγωγού προσαγωγής
- Κατασκευή του μηχανοστασίου

Επίσης γίνεται εκτίμηση των παράγωγων έργων που υλοποιούνται, όπως είναι η διάνοιξη οδών προσπέλασης, και τα οποία γίνονται σε δύσβατες περιοχές με ιδιαίτερη αισθητική και περιβαλλοντική αξία, δημιουργώντας πρόσθετες τεχνικές και περιβαλλοντικές δυσκολίες.

Κατά τη φάση λειτουργίας του μικρού υδροελεκτρικού μελετώνται επιπτώσεις που οφείλονται κυρίως στην εκτροπή της παροχής από τη θέση υδροληψίας μέχρι τον σταθμό παραγωγής ηλεκτρικής ενέργειας. Οι επιπτώσεις αυτές μπορεί να έχουν σημαντικό περιβαλλοντικό αντίκτυπο τόσο στη χλωρίδα όσο και στην πανίδα, ιδιαίτερα αν τα έργα αυτά υλοποιούνται σε προστατευόμενες περιοχές.

Τέλος, άλλες περιβαλλοντικές επιπτώσεις που διερευνώνται κατά τη λειτουργία του έργου και προτείνονται αντίστοιχα μέτρα είναι η ηχητική όχληση, η ασφαλής λειτουργία του μηχανοστασίου καθώς και η προστασία των περιοχών που έρχονται σε επαφή με τμήματα του έργου.[28]

4.3 Μετρήσεις λειτουργίας και βαθμού απόδοσης ΜΥΗΕ

Με την ολοκλήρωση κατασκευής του ΜΥΗΕ για να διαπιστωθεί αν η κατασκευή υλοποιήθηκε σύμφωνα με τους κανονισμούς και αν η παραγόμενη ηλεκτρική ενέργεια είναι η αναμενόμενη πραγματοποιούνται οι παρακάτω μετρήσεις:

- Μέτρηση της παροχής
 a) Σε κλειστό κυλινδρικό αγωγό ικανού μήκους για την επίτευξη ομαλής ροής με μετρητικό σύστημα υπερήχων.
 b) Σε ανοιχτό αγωγό με τη χρήση μηχανικών μέτρησης της ταχύτητας του νερού
- Μέτρηση της ταχύτητας περιστροφής της μηχανής.
- Μέτρηση της ταχύτητας περιστροφής της μηχανής.
• Μέτρηση της ηλεκτρικής ισχύος εξόδου με αναλυτική καταγραφή της έντασης και της τάσης του ρεύματος της γεννήτριας ανά φάση.[28]

4.4 Διαδικασίες αδειοδότησης μικρού ΥΗΕ

Μια τυπική διαδικασία για την χορήγηση άδειας λειτουργίας μικρού ΥΗΕ αποτελείται από τα εξής στάδια:

1. Έκδοση Άδειας Παραγωγής
2. Απόφαση Έγκρισης Περιβαλλοντικών Όρων (ΑΕΠΟ)
3. Μελέτη Περιβαλλοντικών Επιπτώσεων (ΜΠΕ)
4. Άδεια Χρήσης Νερού- Εκτέλεσης Έργου Αξιοποίησης Υδάτινων Πόρων
5. Έκδοση Άδειας Εγκατάστασης
6. Προσωρινή Σύνδεση για Λειτουργία
7. Έκδοση Άδειας Λειτουργίας

Στο υπόλοιπο της ενότητας παρουσιάζονται με περισσότερες λεπτομέρειες τα προαναφερθέντα στάδια της διαδικασίας αδειοδότησης.

Έκδοση Άδειας Παραγωγής

Υποβολή αίτησης στη ΡΑΕ. Ο φάκελος πρέπει να περιλαμβάνει:

• Νομική υπόταση, διοικητική και οργανωτική δομή του αιτούντος, καθώς και οικονομικά στοιχεία των τελευταίων 3 ετών.

• Συνοπτική παρουσίαση του επιχειρηματικού σχεδίου για τα επόμενα 5 έτη.

• Μελέτη σκοπιμότητας.

• Συνοπτικό χρηματοοικονομικό προγραμματισμό για το έργο που θα παρέχει την προβλεπόμενη ταμειακή ροή.[29]

Τα κριτήρια που λαμβάνονται υπόψη για την έκδοση θετικής ή αρνητικής γνωμοδότησης της ΡΑΕ είναι τα ακόλουθα:

• Η ασφάλεια και προστασία του συστήματος του δικτύου ,των εγκαταστάσεων παραγωγής και του συνδεδεμένου εξοπλισμού.

• Η προστασία του περιβάλλοντος.

• Η αποδοτική παραγωγή και χρήση της ηλεκτρικής ενέργειας.

60
- Οι τεχνικές, οικονομικές και χρηματοδοτικές δυνατότητες του αιτούντος.

- Η αρμοδιότητα υλοποίησης του έργου, σύμφωνα με τις εκπονηθείσες μελέτες.

- Ο μακροπρόθεσμος ενεργειακός σχεδιασμός της χώρας.

- Η προστασία των καταναλωτών.

Η χορηγούμενη Άδεια Παραγωγής έχει διάρκεια 25 ετών με δυνατότητα ανανέωσης μέχρι ίσο χρόνο. Εάν εντός 24 μηνών δεν έχει χορηγηθεί Άδεια Εγκατάστασης, με υπαιτιότητα του αδειούχου, η Άδεια Παραγωγής ανακαλείται.[30]

Απόφαση Έγκρισης Περιβαλλοντικών Όρων

Για την κατασκευή νέων ή υφιστάμενων έργων ΜΥΗΕ απαιτείται Μελέτη Περιβαλλοντικών Επιπτώσεων (ΜΠΕ) συνοδευόμενη με την Έκδοση Απόφασης Έγκρισης Περιβαλλοντικών Όρων (ΑΕΠΟ). Αρμόδια αρχή για την περιβαλλοντική αδειοδότηση είναι η οικεία Αποκεντρωμένη Διοίκηση και η έγκριση των περιβαλλοντικών Όρων γίνεται με απόφαση του Γενικού Γραμματέα της.

Για κάθε νέο έργο ή μετεγκατάσταση υφιστάμενου απαιτείται η σύμφωνη γνώμη της αρχαιολογικής υπηρεσίας εάν η περιοχή χωροθέτησης του έργου είναι αρχαιολογικού ενδιαφέροντος καθώς και της δασικής υπηρεσίας για έργα που χωροθετούνται σε δάση, άλσος και αναδασωτέες περιοχές.

Η Απόφαση Έγκρισης Περιβαλλοντικών Όρων (ΑΕΠΟ) ισχύει για 10 χρόνια και μπορεί να ανανεωθεί ύστερα από αίτημα προς την αρμόδια περιβαλλοντική αρχή πριν τη λήξη της κανονικής ισχύος της.[31]

Μελέτη Περιβαλλοντικών Επιπτώσεων

Μια Περιβαλλοντική Μελέτη Επιπτώσεων περιλαμβάνει:

- Επιτρεπόμενες χρήσεις γης στην περιοχή όπου θα κατασκευαστεί το έργο.

- Περιγραφή της θέσης του σχεδιασμού του έργου κατά το στάδιο κατασκευής και λειτουργίας του. Επίσης περιγραφή των μεθόδων κατασκευής και των ποσοτήτων υλικών που χρησιμοποιήθηκαν καθώς και των κατάλοιπων και εκπομπών, ιδίως στο νερό, στην ατμόσφαιρα και στο έδαφος, που θα προκύψουν κατά το στάδιο κατασκευής και λειτουργίας του έργου.

- Περιγραφή των εναλλακτικών λύσεων που εξετάστηκαν από τον φορέα ως προς τη θέση και το μέγεθος του έργου καθώς και επισήμανση των κύριων λόγων επιλογής της θέσης ως προς της επιπτώσεις στο περιβάλλον.
Περιγραφή των επιπτώσεων που μπορεί να προκύψουν κατά την κατασκευή και λειτουργία του έργου και οι οποίες σχετίζονται με τον πληθυσμό, την πανίδα, τη χλωρίδα, το νερό, τον αέρα, τους κλιματικούς παράγοντες και υλικά αγαθά, μεταξύ των οποίων η αρχιτεκτονική, πολιτιστική και αρχαιολογική κληρονομιά.

Περιγραφή των μεθόδων που χρησιμοποιήθηκαν για τη συλλογή στοιχείων ώστε να προβλεφθεί και να γίνει εκτίμηση των επιπτώσεων στο περιβάλλον από την κατασκευή και λειτουργία του έργου καθώς και επισήμανση των ενδεχόμενων δυσκολιών που προέκυψαν κατά τη συλλογή των απαιτούμενων πληροφοριών.

Αναλυτική περιγραφή των μέτρων που πρέπει να ληφθούν για να αποφευχθούν, μειωθούν και αποκατασταθούν οι σημαντικές επιπτώσεις του έργου στο περιβάλλον.

Αναφορά του σχεδίου περιβαλλοντικής διαχείρισης που θα εφαρμοστεί ώστε να μειωθούν οι επιπτώσεις στο περιβάλλον και παρακολούθηση των προτεινόμενων μέτρων. Υπεύθυνος του προγράμματος παρακολούθησης των μέτρων είναι ο φορέας του έργου και περιλαμβάνει τουλάχιστον:

α) Τις παραμέτρους, τα στοιχεία και τους δείκτες του περιβάλλοντος που παρακολουθούνται.

β) Τις μεθόδους, τον τόπο, τον χρόνο και τη συχνότητα καταγραφής.

γ) Τα μέτρα διασφάλισης της ποιότητας και αξιοπιστίας των καταγραφών.

δ) Το χρονοδιάγραμμα ενημέρωσης του ηλεκτρονικού περιβαλλοντικού μητρώου.

Μη τεχνική περίληψη των πληροφοριών που περιλαμβάνονται στην ΜΠΕ.

Εξειδικευμένες μελέτες οι οποίες τυχόν προέκυψαν κατά το στάδιο της διαδικασίας προκαταρτικού προσδιορισμού περιβαλλοντικού απαιτήσεων εφόσον αυτός ακολουθήθηκε και οι οποίες παρατίθενται σε παράρτημα της ΜΠΕ.[31]

Ενιαία Άδεια Χρήσης Νερού- Εκτέλεσης Έργου Αξιοποίησης Υδάτινων Πόρων

Για τη χρήση νερού και την κατασκευή έργου για την αξιοποίηση υδατικών πόρων απαιτείται άδεια (Ν.3199/2003, ΦΕΚ. Α’2880 αρθ.11). Για την έκδοση αυτής της άδειας πρέπει να επιβεβαιώνεται η διαθεσιμότητα των ποσοτήτων νερού που θα αξιοποιηθούν και να αναφέρεται ο σκοπός της έκδοσης της σύμφωνα με το σχέδιο διαχείρισης των λεκανών απορροής της Διεύθυνσης Υδάτων της οικείας Περιφέρειας. Επίσης για την εκτέλεση έργων εκμετάλλευσης του νερού απαιτείται Άδεια Εκτέλεσης Έργων Αξιοποίησης Υδατικού Δυναμικού.
Στην περίπτωση κατασκευής και λειτουργίας μικρών υδροηλεκτρικών σταθμών ισχύος μέχρι 15MW εκδίδεται ενιαία άδεια που περιλαμβάνει της δύο παραπάνω. Για την έκδοση της άδειας αυτής αρμόδιος είναι ο Γενικός Γραμματέας της οικείας Περιφέρειας όπου πρόκειται να κατασκευαστεί το έργο.

Η Ενιαία Άδεια εκδίδεται εντός 20 ημερών από την έκδοση της απόφασης ΕΠΟ ενώ έχει διάρκεια ισχύος 10 χρόνια. Για την ανανέωση της άδειας απαιτείται να υποβληθεί εκ νέου αίτηση και να ακολουθηθεί η ίδια διαδικασία.[31]

Τα δικαιολογητικά που συνοδεύουν την αίτηση φακέλου είναι τα εξής:

- Τοπογραφικό διάγραμμα, κατάλληλης κλίμακας.
- Αντίγραφο ιδιωτικού συμφωνητικού σε περίπτωση χρήσης νερού από χώρο ξένης ιδιοκτησίας.
- Νομική εξουσιοδότηση εκπροσώπησης.
- Γενική περιγραφή του έργου.
- Επαρκή στοιχεία μελέτης στα οποία αναλύεται η ποιοτική και ποσοτική κατάσταση των υδατικών πόρων, πριν και μετά την εκτέλεση του έργου.[29]

Έκδοση Άδειας Εγκατάστασης

Η άδειας εγκατάστασης εκδίδεται από τον Γενικό Γραμματέα της οικείας Περιφέρειας εντός 15 εργάσιμων ημερών από τη διαδικασία ελέγχου των δικαιολογητικών. Η αίτηση χορήγησης άδειας εγκατάστασης συνοδεύεται από τα παρακάτω δικαιολογητικά:

- Έγκριση περιβαλλοντικών όρων.
- Νόμιμο αποδεικτικό στοιχείο αποκλειστικής χρήσης του χώρου εγκατάστασης του σταθμού.
- Υπεύθυνη δήλωση του ιδιοκτήτη του σταθμού και του μελετητή για την ανάθεση της μελέτης εγκατάστασης.
- Παραστατικά πληρωμής τελών κρατήσεων και φόρων.

Η άδεια εγκατάστασης ισχύει για 2 έτη και μπορεί να παρατείνεται ,κατά ανώτατο όριο, για ίσο χρόνο μετά από αίτηση του κατόχου της, που υποβάλλεται εντός του αρχικού χρόνου ισχύος της άδειας εφόσον:

α) Κατά τη λήξη της διετίας έχει εκτελεσθεί έργο, οι δαπάνες του οποίου καλύπτουν το 50% της επένδυσης.
6) δεν έχει γίνει έναρξη λειτουργίας του έργου, για λόγους που αποδεδειγμένα δεν οφείλονται σε παράλειψη ή σε οποιαδήποτε μορφή υπαιτιότητα του κατόχου της άδειας εγκατάστασης με την προϋπόθεση ότι έχουν συναφθεί οι αναγκαίες συμβάσεις για την προμήθεια του εξοπλισμού ο οποίος είναι απαραίτητος για την υλοποίηση του έργου.

Σε περίπτωση ανάκλησης της άδειας παραγωγής ανακαλείται υποχρεωτικά και η άδεια εγκατάστασης.[31]

Προσωρινή Σύνδεση για Δοκιμαστική Λειτουργία

Μετά τη σύναψη σύμβασης αγοραπωλησίας και σύνδεσης και αφού έχουν τελειώσει τα έργα εγκατάστασης, ο παραγωγός υποβάλλει αίτηση στον Διαχειριστή για την έκδοση προσωρινής άδειας ώστε να πραγματοποιηθούν οι απαραίτητες δοκιμές. Η αίτηση συνοδεύεται από υπεύθυνη δήλωση που υπογράφεται από τον παραγωγό. Μετά την εγκατάσταση και η οποία βεβαιώνει ότι όλα τα έργα εκτελέστηκαν κατά τον προγραμματισμένο χρονικό διάστημα και σύμφωνα με τους ισχύοντες κανονισμούς και σύμφωνα με τη σύμβαση που έχει υπογραφεί.

Μετά την τροφοδότηση του σταθμού και τους ελέγχους που πραγματοποιούντος τόσο ο παραγωγός όσο και ο Διαχειριστής και εφόσον επιτευχθεί απρόσκοπτη λειτουργία εντός 15 συνεχόμενων ημερών χορηγείται υποχρέωση στον παραγωγό για την πραγματοποίηση επιτυχώς.

Το τίμημα της ενέργειας που καταναλώνεται κατά τη διάρκεια της δοκιμαστικής λειτουργίας καταβάλλεται μετά τη λήψη της άδειας λειτουργίας και σύμφωνα με τη σύμβαση αγοραπωλησίας.[31]

Έκδοση Άδειας Λειτουργίας

Η άδεια λειτουργίας χορηγείται μετά από σχετική αίτηση από τον Γενικό Γραμματέα της οικείας Περιφέρειας ο οποίος υποχρεούται στην έκδοση της εντός 15 ημερών από την ολοκλήρωση των ανωτέρων ελέγχων εφόσον αυτοί αποβούν θετικοί. Η άδεια λειτουργίας ισχύει για 20 χρόνια και μπορεί να ανανεωθεί μέχρι ίσο χρονικό διάστημα. Σε περίπτωση ανάκλησης της Άδειας λειτουργίας ανακαλείται και η Άδεια παραγωγής.[31]

Τα δικαιολογητικά του συνοδευτικού της αίτησης φακέλου είναι:

- Επικυρωμένο αντίγραφο σύμβασης σύνδεσης στο Σύστημα ή στο Δίκτυο, μεταξύ Παραγωγού και ΑΔΜΗ ή ΔΕΗ ΑΕ αντίστοιχα.

- Επικυρωμένο αντίγραφο σύμβασης αγοραπωλησίας Η/Ε μεταξύ παραγωγού και ΑΔΜΗ ή ΔΕΗ ΑΕ, ανάλογα με το αν η παραγόμενη ενέργεια διοχετεύεται στο Σύστημα ή στο Δίκτυο αντίστοιχα.
• Βεβαίωση του ΑΔΜΗΕ ή της ΔΕΗ ΑΕ περί ολοκλήρωσης των κατασκευών του δικτύου σύνδεσης και των λοιπών αναγκαίων εγκαταστάσεων, σύμφωνα με τις ελάχιστες προδιαγραφές που ορίζονται στη σύμβαση σύνδεσης.

• Νομικά θεωρημένο αντίγραφο της οικοδομικής άδειας του σταθμού παραγωγής.

• Πιστοποιητικό της αρμόδιας υπηρεσίας του πυροσβεστικού σώματος, ότι έχουν ληφθεί όλα τα απαραίτητα μέτρα πυρασφαλείας.

• Έκθεση αυτοψίας της αδειοδοτούσας αρχής, με την οποία βεβαιώνεται η τήρηση των όρων και περιορισμών της άδειας εγκατάστασης.

• Υπεύθυνη δήλωση του φορέα του έργου ότι έχουν τηρηθεί οι όροι της απόφασης ΕΠΟ και ότι θα τηρούνται και κατά τη διάρκεια λειτουργίας.

• Λοιπές υπεύθυνες δηλώσεις του ιδιοκτήτη, των υπεύθυνων για την κατασκευή και λειτουργίας του έργου μηχανικών.[29]
Πίνακας 4.1: Η αδειοδοτική διαδικασία ΜΥΗΣ [31]

<table>
<thead>
<tr>
<th>$P_{\text{installed}} \leq 50$ Kw</th>
<th>50 Kw $< P_{\text{installed}} \leq 15$ MW</th>
</tr>
</thead>
<tbody>
<tr>
<td>Δεν απαιτείται Άδεια Παραγωγής ούτε άλλη σχετική διαπιστωτική απόφαση (N.3468/2006, αρ0.4, όπως αντικαταστάθηκε με το N.3851/2010, αρ0.2,§ 12)</td>
<td>Απαιτείται Άδεια Παραγωγής. Η αίτηση προς την ΡΑΕ πρέπει να συνοδεύεται από τεκμηριωμένη υδρολογική μελέτη.</td>
</tr>
<tr>
<td>Πρέπει να υποβληθεί αίτηση για την διατύπωση Προσφοράς Σύνδεσης προς τον αρμόδιο Διαχειριστή, ο οποίος και θεωρεί τα τοπογραφικά διαγράμματα αποτύπωσης του τρόπου σύνδεσης. Χορηγείται Προσφορά Σύνδεσης καταρχήν μη δεσμευτική. Αυτή οριστικοποιείται και καθίσταται δεσμευτική μετά το τέλος της περιβαλλοντικής αδειοδότησης (έκδοση απόφασης ΕΠΟ)</td>
<td>Απαιτείται Έγκριση Περιβαλλοντικών Όρων (ΕΠΟ) Ορόν (ΕΠΟ). Η αίτηση πρέπει να συνοδεύεται από Μελέτη Περιβαλλοντικών Επιπτώσεων (ΜΠΕ) ή Περιβαλλοντικής Έκθεσης (εφόσον το έργο ενταχθεί στην κατηγορία Β4 κατά το άρθρο 10, §1 του N.3468). Απαιτείται Άδεια Χρήσης Νερού (energeiai krhēsi ΥΑ.43504/2005, αρ0.1,§1).</td>
</tr>
<tr>
<td>Εφόσον πρόκειται να εκτελεστούν δομικά έργα, απαιτούνται Οικοδομικές Άδειες. Απαιτείται Σύμβαση Περιβάλλοντικής Αγοραπωλησίας.</td>
<td>Απαιτείται Άδεια Εγκατάστασης. Απαιτείται Άδεια Αξιοποίησης Υδατικών Πόρων (energeiai krhēsi ΥΑ.43504/2005, αρ0.6,§3).</td>
</tr>
<tr>
<td>Δεν απαιτείται Άδεια Εγκατάστασης ή Άδεια Εκτέλεσης Έργων Αξιοποίησης Υδατικών Πόρων</td>
<td>Απαιτείται Άδειας Εγκατάστασης. Η ΥΑ.13310/2007, δίνει την δυνατότητα υποβολής μίας αίτησης (Παράρτημα, Μέρος 1 και Μέρος 2,§2) για την έκδοση μίας άδειας που ενσωματώνει την Ενιαία Άδεια και την Άδεια Εγκατάστασης.</td>
</tr>
<tr>
<td>Δεν απαιτείται Δοκιμαστική Λειτουργία. Δεν απαιτείται ούτε Άδεια Λειτουργίας (N.3468/2006, αρ0.8, όπως αντικαταστάθηκε με το N.3851/2010, αρ0.3,§2).</td>
<td>Απαιτείται Προσωρινή Σύνδεση για Δοκιμαστική Λειτουργία που γίνεται κατόπιν αιτήσεως προς τον αρμόδιο Διαχειριστή. Εφόσον επιτυχεί αποβλημάτιση λειτουργίας 15 ημερών, ο Διαχειριστής εκδίδει βεβαίωση επιτυχούς περάτωσης των δοκιμών (Υ.Α.133310/2007, ΦΕΚ. Β’ 1153, αρ0.14). Απαιτείται Άδεια Λειτουργίας</td>
</tr>
</tbody>
</table>
ΚΕΦΑΛΑΙΟ 5ο
ΠΕΡΙΒΑΛΛΟΝΤΙΚΕΣ ΕΠΙΠΤΩΣΕΙΣ ΜΥΗΕ

5.1 Εισαγωγή
Η λειτουργία ενός μικρού υδροηλεκτρικού έργου (ΜΥΗΕ) είναι ένα έργο φιλικό προς το περιβάλλον καθώς τα έργα που πραγματοποιούνται δεν επηρεάζουν αισθητικά και λειτουργικά σε μεγάλο βαθμό την εικόνα του περιβάλλοντος.

Οι περιβαλλοντικές επιπτώσεις ενός ΜΥΗΕ, ακόμη και στην περίπτωση που διαθέτει μικρό ταμιευτήρα, δεν είναι συγκρίσιμες με τις αντίστοιχες ενός μεγάλου υδροηλεκτρικού έργου στις οποίες εντοπίζονται εδαφικές (π.χ. τραυματισμός του εδαφικού προφίλ από τις κατασκευές, αισθητική ένταξη του έργου), υδρολογικές (π.χ. δίαιτα του ποταμού, εμπλουτισμός υπόγειων νερών, χρήση του νερού), οικολογικές (π.χ. πανίδα και χλωρίδα), κοινωνικές (π.χ. μετακίνηση οικιστών λόγω κατάκλισης, αλλαγή συνηθειών) ή οικονομικές διαφοροποιήσεις (π.χ. χρήση γης).

Οι περιβαλλοντικές επιπτώσεις που σχετίζονται με την εγκατάσταση και τη λειτουργία ενός ΜΥΗΕ και οι οποίες ενδέχεται να διαφοροποιούνται ως προς την έκταση και την ένταση τους είναι:

- Οπτική όχληση και αισθητική ένταξη.
- Φυσικό περιβάλλον, δηλαδή χλωρίδα και πανίδα (κυρίως ιχθυο-πανίδα) και οικολογική παροχή.
- Έδαφος (επιφανειακά και υπόγεια νερά).[32]

5.2 Περιβαλλοντικές Επιπτώσεις ΜΥΗΕ

Οπτική όχληση-αισθητική ένταξη
Η οπτική όχληση δημιουργείται από τα έργα οδοποιίας, τα οποία αν δεν σχεδιαστούν και κατασκευαστούν σωστά μπορεί να προκαλέσουν μια σημαντική αλλοίωση της αισθητικής του τοπίου. Επίσης μπορούν να υπάρξουν κατολισθήσεις σε ασταθή εδάφη ενώ σημαντικές είναι και οι συνέπειες από την απόθεση μεγάλων όγκων μπαζών σε κοντινά ρέματα ή χαράδρες.

Οι οπτικές επιπτώσεις από το φράγμα, την υδροληψία, τον αγωγό προσαγωγής, το κτίριο του σταθμού παραγωγής, το οποίο μπορεί να είναι μικρό (περίπου 100 m²) και η κατασκευή του να είναι παραδοσιακού τύπου (π.χ. πέτρα), και τις γραμμές μεταφοράς μπορεί να είναι ελάχιστες αν η σχεδίαση τηρεί τις απαιτούμενες περιβαλλοντικές προδιαγραφές.
Στα ΜΥΗΕ μεγάλης πτώσης η απόσταση από την υδροληψία μέχρι την έξοδο του μπορεί να είναι της τάξης κάποιων χιλιομέτρων, οπότε το νερό διέρχεται μέσα σε κανάλι ή αγωγό, χωρίς η παρουσία των καναλιών να επηρεάζει σε μεγάλο βαθμό την αισθητική του τοπίου. Το μόνο που θα μπορούσε να υποβαθμίσει την οπτική εικόνα του περιβάλλοντος είναι η δημιουργία πρακτών τα οποία όμως καλύπτονται με αυτοφυή φυτά σε σύντομο χρονικό διάστημα. Ένα άλλο πρόβλημα που μπορεί να προκύψει είναι η αλλαγή της ροής κάποιου καταρράκτη λόγω της εκτροπής των νερών. [32]

Εικόνα 5.1: Θεμελίωση του αγωγού προσαγωγής

Στην περίπτωση που έχουμε δημιουργία ταμιευτήρα οι πιθανές οπτικές επιπτώσεις είναι η κάλυψη εκτάσεων γης με μεγάλες ποσότητες νερού που μπορεί να επηρεάσουν τη γεωργία, τις τοπικές υποδομές, αρχαιολογικούς χώρους και προστατευόμενες περιοχές. Σαν συνέπεια, θα προκληθεί οπτική όχληση λόγω αλλαγής του τοπίου και θα επηρεαστεί και ο τοπικός υδροφόρος ορίζοντας στον οποίο θα υπάρξουν αλλαγές στο υδάτινο και το χερσαίο φυσικό περιβάλλον. Εφόσον όμως κατασκευαστεί φράγμα μπορεί να υπάρξει και δημιουργία υγρότοπου, ο οποίος θα συμβάλλει στη βελτίωση της αισθητικής του τοπίου.
Εικόνα 5.2: Η αλλοίωση περιοχής από την κατασκευή φράγματος

Φυσικό περιβάλλον, χλωρίδα-πανίδα (κυρίως ιχθυοπανίδα)

Η αξιοποίηση του υδάτινου δυναμικού πραγματοποιείται σε ημιορεινές περιοχές (δασικές ή χέρσες εκτάσεις) στις οποίες το υδάτινο δυναμικό συνδυάζεται με την υψομετρική διαφορά μεταξύ της υδροληψίας και του σταθμού παραγωγής ενέργειας εξασφαλίζοντας την επιθυμητή ποσότητα νερού που εξασφαλίζουν τη διασύνδεση του έργου.

Κατηφορικά της ορεινής υδροληψίας ή του φράγματος, η παροχή στη φυσική κοίτη το υπολογιστικό μπορεί να μηδενιστεί για μεγάλα χρονικά διαστήματα. Αυτό μπορεί να έχει αρνητικές συνέπειες στη χλωρίδα και την πανίδα που υπάρχει μεταξύ της υδροληψίας και του σταθμού παραγωγής. Γι’ αυτό θα πρέπει να εξασφαλιστεί η κατάλληλη ποσότητα νερού (οικολογική παροχή) κατηφορικά της υδροληψίας εξαλείφοντας αυτές τις συνέπειες.

Επίσης κατά την κατασκευή η εκχέρσωση της βλάστησης θα πρέπει να πραγματοποιείται μόνο στην αναγκαία έκταση κατασκευής των έργων και ιδίως στην περίπτωση δημιουργίας ταμιευτήρα, καθώς για την κατασκευή του απαιτείται ολοκληρωτική μεταβολή της χλωρίδας με εκχέρσωση της βλάστησης στη λεκάνη κατάληψης του δημιουργούμενου ταμιευτήρα.
Τέλος, θα πρέπει να δίνεται ιδιαίτερη σημασία στην πανίδα που ζει στην περιοχή εξασφαλίζοντας την ελεύθερη μετακίνησή αυτής. Αυτό επιτυγχάνεται με τη δημιουργία ιχθυόδρομου που διευκολύνει την ελεύθερη μετακίνηση ψαριών κατά μήκος του ποταμού.[32]

Εικόνα 5.3: Ιχθυόδρομος

Έδαφος, επιφανειακά & υπόγεια νερά

Με τη δημιουργία φράγματος διακόπτεται η συνεχής παροχή φερτών υλικών κατά μήκος του ποταμού με αποτέλεσμα με το πέρασμα των χρόνων να συσσωρεύονται μεγάλες ποσότητες φερτών υλικών στην υδροληψία ή τον ταμιευτήρα. Οι φερτές ύλες μειώνουν τη διαθέσιμη επιφάνεια του ταμιευτήρα αυξάνοντας τις πιθανότητες να υπάρξει διάβρωση κατηφορικά του σταθμού παραγωγής εάν δεν ληφθούν πρόσθετα μέτρα.

Τα επιφανειακά ύδατα της περιοχής επηρεάζονται σημαντικά με τη λειτουργία του ΜΥΗΕ, ιδίως στην περιοχή του φράγματος/υδροληψίας μέχρι την έξοδο του νερού στην κοίτη του ποταμού, στο ύψος του σταθμού παραγωγής ηλεκτρικής ενέργειας. Στο σημείο αυτό αν και θα πρέπει να υπάρχει μια ελάχιστη παροχή για τη διατήρηση της οικολογικής ισορροπίας η ποσότητα νερού που διέρχεται είναι μικρή.

Επίσης κατά το σχεδιασμό και χωροθέτηση ενός ΜΥΗΕ θα πρέπει να εξασφαλιστούν οι υπάρχουσες χρήσεις του νερού από την υδροληψία έως τον σταθμό παραγωγής ή να μελετώνται
εναλλακτικοί τρόποι. Μετά την αξιοποίηση του νερού δεν υφίσταται καμία μεταβολή στη χρήση του που διέρχεται την κοίτη του ποταμού.

Τέλος, στην περίπτωση κατασκευής φράγματος και δημιουργίας ταμιευτήρα, σημειώνεται ανύψωση της στάθμης της ελεύθερης επιφάνειας του νερού, με αποτέλεσμα την ανύψωση του υπόγειου υδροφόρου ορίζοντα.[32]

Πίνακας 5-1: Περιβαλλοντικά θέματα ΜΥΗΕ και προτεινόμενα μέτρα αντιμετώπισης

<table>
<thead>
<tr>
<th>Περιβαλλοντικά Θέματα Μικρών Υδροηλεκτρικών Εργαν</th>
<th>Θετικές επιδράσεις</th>
<th>Επιπτώσεις</th>
<th>Προτάσεις</th>
</tr>
</thead>
<tbody>
<tr>
<td>Απουσία εκπομπών (CO₂,NOₓ,SO₂)</td>
<td>Οπτική όχληση/τοπίο</td>
<td>Χρήση υλικών και πρακτικών της περιοχής για κατασκευές. Κατάλληλος σχεδιασμός και χωροθέτηση των στοιχείων του ΜΥΗΕ. Εγκαταστάσεις αγωγών, κατάλληλη χώρας, οδικού δικτύου, χρήση υφιστάμενων δρόμων</td>
<td>Κατάλληλος σχεδιασμός (π.χ. χρήση παγίδων ψηφιοπανίδας στην υδροληψία, χρήση υφιστάμενων δρόμων του οπού απαιτείται).</td>
</tr>
<tr>
<td>Συμβολή στην αύξηση οξυγόνωσης των υδατορευμάτων</td>
<td>Θησειμότητα ιχθυοπανίδας</td>
<td>Κατάλληλος σχεδιασμός (π.χ. χρήση παγίδων ψηφιοπανίδας στην υδροληψία, χρήση υφιστάμενων δρόμων του οπού απαιτείται).</td>
<td></td>
</tr>
<tr>
<td>Ο ταμιευτήρας (όταν χρησιμοποιείται) δημιουργεί νέους βιότοπους</td>
<td>Σύνδεση με το δίκτυο</td>
<td>Περιορισμός επιπτώσεων (π.χ. αποκατάσταση περιοχής, επιλογή υπόγειων εργασιών).</td>
<td></td>
</tr>
<tr>
<td>Χλωρίδα και υδατικοί πόροι</td>
<td>Μείωση της επέμβασης σε οικοσυστήματα και εκχέρσωση βλάστησης. Εξασφάλιση οικολογικής παροχής και χρήσεων νερού κατάντη</td>
<td>Περιορισμός επιπτώσεων (π.χ. αποκατάσταση περιοχής, επιλογή υπόγειων εργασιών).</td>
<td></td>
</tr>
<tr>
<td>Οδικό δίκτυο</td>
<td>Περιορισμός επιπτώσεων (π.χ. χρήση διαλόγων δρόμου, αποκατάσταση φαρμακία των υδροφόρων και υφιστάμενης βλάστησης, συντήρηση του οδικού δικτύου).</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>
5.3 Τεχνικές οδηγίες και προδιαγραφές

Εφόσον επιλεγεί οδροληψία ορεινού τύπου και κατασκευή οδών προσπέλασης, δεν θα επηρεαστεί σε μεγάλο βαθμό το φυσικό περιβάλλον με την προϋπόθεση ότι:

- Η οδροληψία στην κοίτη του ποταμού δεν έχει μεγάλο ύψος έτσι ώστε να μην υπάρξει σημαντική αλλοίωση του χώρου.
- Δεν υπάρχει σημαντική εκχέρσωση δέντρων σε προστατευόμενες περιοχές στο στάδιο κατασκευής της ορεινής οδροληψίας και των οδών προσπέλασης.
- Εξασφαλίζεται η ελεύθερη μετακίνηση ιχθυοπανίδας (εφόσον υπάρχει) με την κατασκευή ιχθυόδρομου.
- Η χάραξη των δρόμων προσπέλασης είναι κατάλληλη σε συνδυασμό με δενδροφύτευση και πρόθεση μέτρα αντιστήριξης των πρανών για την αποφυγή μεγάλων εκσκαφών.
- Η ποσότητα του νερού κατά της οδροληψίας είναι κατάλληλη έτσι ώστε να μην επηρεάζεται η χλωρίδα και η πανίδα.
- Εξασφαλίζονται οι υφιστάμενες χρήσεις νερού κατά του έργου υδροληψίας και μέχρι τον σταθμό παραγωγής ή εξετάζονται εναλλακτικές.
- Δημιουργείται ειδική κατασκευή για την απόθεση (περιοδική, μέσω εκκενωτή πυθμένα ή συνεχώς σε υδροληψία ορεινού τύπου) φερτών υλικών κατά του έργου.

Στην περίπτωση της επιλογής κατασκευής φράγματος θα πρέπει να εξεταστούν τα ακόλουθα:

- Τα υλικά κατασκευής του φράγματος και των επί μέρους έργων (συνήθως επιλέγονται χομάτινα φράγματα τα οποία προσαρμόζονται πιο εύκολα με το φυσικό περιβάλλον καθώς έχουν και καλύτερη συμπεριφορά σε σεισμούς).
- Οι χώροι απόληψης και απόρριψης υλικών με αποφυγή χώρων που βρίσκονται εκτός περιοχής κατασκευής του έργου.
- Η χρονότητα κατασκευής φράγματος συνήθως πραγματοποιείται σε στένωμα ποταμών στο οποίο θα πρέπει να ελεγχθεί ως προς τη διασφάλιση της δημιουργίας υγροτόπων χωρίς να επηρεάζεται η χλωρίδα και η πανίδα της περιοχής κατά την κατασκευή ή κατά τη λειτουργία του.
- Ευστάθεια του φράγματος και σεισμικότητα της περιοχής (ανάλογα μελετών η χρηματοδότηση ή ιδιαίτερα σε περιπτώσεις εγγύτητας οικισμών).[32]

Αγωγός προσαγωγής

Αν οι αγωγοί είναι από σκυρόδεμα θα πρέπει να τοποθετούνται εντός του εδάφους τόσο για ασφάλεια όσο και για την ελεύθερη μετακίνηση της πανίδας. Η οδεύση του αγωγού προσαγωγής εντός της κοίτης του ποταμού θα πρέπει να αποφεύγεται διότι επηρεάζεται το ποτάμιο οικοσύστημα. Αντίθετα, η διάνοιξη των οδών προσπέλασης που πραγματοποιούνται εφόσον
γίνει εγκιβωτισμός των αγωγών προσαγωγής δεν επηρεάζουν μόνιμα το φυσικό περιβάλλον καθώς με το πέρας των εργασιών η περιοχή επανέρχεται στην αρχική της κατάσταση.[32]

Σταθμός παραγωγής

Η διώρυγα φυγής θα πρέπει να είναι κατάλληλα κατασκευασμένη έτσι ώστε να αποφευχθεί η διάβρωση του πυθμένα στο σημείο εξόδου του νερού από τον σταθμό παραγωγής. Επίσης θα πρέπει να διασφαλιστεί η αποφυγή αλλοίωσης των φυσικοχημικών χαρακτηριστικών του νερού έτσι ώστε να αποδοθεί στην κοίτη του ποταμού όπως πριν την εκμετάλλευση. Τέλος, η κατασκευή του κτιρίου του σταθμού παραγωγής θα πρέπει να είναι συμβατή με την τοπική αρχιτεκτονική.[32]

Γραμμή μεταφοράς ηλεκτρικής ενέργειας

Η κατασκευή των γραμμών μεταφοράς γίνεται σύμφωνα με τις υποδείξεις της ΔΕΗ. Συνήθως προτείνεται να χρησιμοποιούνται οι υπάρχουσες οδοί προσπέλασης αποφεύγοντας περαιτέρω εκχέρσωση δένδρων που συνεπάγεται σημαντική υποβάθμιση του φυσικού περιβάλλοντος. Τέλος, ζητήματα όπως ατμοσφαιρική ρύπανση και θόρυβος λαμβάνονται υπόψη μόνο σε περίπτωση που ο ΜΥΗΕ κατασκευάζεται σε κατοικημένη περιοχή.[32]
ΚΕΦΑΛΑΙΟ 6Ο
ΠΕΡΙΓΡΑΦΗ ΜΥΗΕ ΔΙΣΤΡΑΤΟ ΚΟΝΙΤΣΗΣ

6.1 Γεωγραφική θέση

Η περιοχή μελέτης και η ευρύτερη περιοχή εντάσσονται διοικητικά στην Περιφέρεια Ηπείρου με έδρα τα Ιωάννινα και ανήκει στο Δήμο Κόνιτσας. Ο πλησιέστερος στην περιοχή του έργου οικισμός είναι το χωριό Δίστρατο. Αποψη από τη γεωγραφική θέση της υπό μελέτης περιοχής παρουσιάζεται στην παρακάτω εικόνα.

Εικόνα 6.1: Χάρτης της ευρύτερης περιοχής

6.1.1 Βροχομετρική πληροφορία

Στην εξεταζόμενη λεκάνη απορροής της περιοχής στην οποία έχει εγκατασταθεί ο ΜΥΗΕ υπάρχει ο βροχομετρικός σταθμός του χιονοδρομικού κέντρου Βασιλίτσας ,του οποίου τα στοιχεία θέσης του είναι: γεωγραφικό πλάτος 40.05833°Ν, γεωγραφικό μήκος : 21.08306° Ε και υψόμετρο 1780 m. Στον παρακάτω πίνακα περιλαμβάνονται οι μέσες τιμές βροχόπτωσης ανά μήνα τα τελευταία 5-ετία.[33]
Πίνακας 6-1: Μέσες τιμές βροχόπτωσης ανά μήνα των τελευταίων 5 ετών

<table>
<thead>
<tr>
<th>ΕΤΟΣ</th>
<th>ΙΑΝ</th>
<th>ΦΕΒ</th>
<th>ΜΑΡ</th>
<th>ΑΠΡ</th>
<th>ΜΑΪ</th>
<th>ΙΟΥΝ</th>
<th>ΙΟΥΛ</th>
<th>ΑΥΓ</th>
<th>ΣΕΠ</th>
<th>ΟΚΤ</th>
<th>ΝΟΕ</th>
<th>ΔΕΚ</th>
</tr>
</thead>
<tbody>
<tr>
<td>2013</td>
<td>2,57</td>
<td>2,62</td>
<td>4,88</td>
<td>6,02</td>
<td>3,74</td>
<td>1,77</td>
<td>0</td>
<td>0</td>
<td>1,47</td>
<td>4,25</td>
<td>9,71</td>
<td>2,45</td>
</tr>
<tr>
<td>2014</td>
<td>1,94</td>
<td>1,16</td>
<td>3,18</td>
<td>2,88</td>
<td>1,92</td>
<td>1,84</td>
<td>1,5</td>
<td>1,18</td>
<td>2,43</td>
<td>3,23</td>
<td>3,26</td>
<td>3,58</td>
</tr>
<tr>
<td>2015</td>
<td>1,46</td>
<td>2,24</td>
<td>4,1</td>
<td>1,21</td>
<td>0,86</td>
<td>2,85</td>
<td>0,74</td>
<td>0</td>
<td>0,073</td>
<td>0,00645</td>
<td>5,03</td>
<td>0,0258</td>
</tr>
<tr>
<td>2016</td>
<td>3,74</td>
<td>4,19</td>
<td>2,87</td>
<td>0,02</td>
<td>0</td>
<td>2,52</td>
<td>1,96</td>
<td>5,79</td>
<td>4,97</td>
<td>6,83</td>
<td>0,135</td>
<td></td>
</tr>
<tr>
<td>2017</td>
<td>2,5</td>
<td>2,44</td>
<td>2,44</td>
<td>1,45</td>
<td>4,18</td>
<td>2,31</td>
<td>2,15</td>
<td>0,92</td>
<td>2,19</td>
<td>2,13</td>
<td>10,96</td>
<td>6,3</td>
</tr>
</tbody>
</table>

Εικόνα 6.2: Γράφημα μέσων τιμών βροχόπτωσης των τελευταίων 5 ετών

Στο παραπάνω γράφημα παρατηρούμε ότι οι μέσες τιμές βροχόπτωσης είναι υψηλές κατά τους χειμερινούς μήνες. Ιδιαίτερα τον μήνα Νοέμβριο η μέση τιμή βροχόπτωσης τα τελευταία 5 έτη είναι πάνω από 4mm. Αντίθετα κατά τους καλοκαιρινούς μήνες οι μέσες τιμές βροχόπτωσης είναι πολύ χαμηλές και ιδιαίτερα τον Αύγουστο μήνα η μέση τιμή βροχόπτωσης δεν ξεπερνά τα 2 mm.[33]
6.2 Περιγραφή έργου

Το ΜΥΗΕ που βρίσκεται στην περιοχή Δίστρατο έχει κατασκευαστεί σε παραπόταμο του ποταμού Αώου, και είναι κοντά στο χωριό Δίστρατο του Δήμου Κόνιτσας. Το έργο έχει μία υδροληψία, σε υψόμετρο 871 m.

Τα νερά συλλέγονται από ένα μικρό υπερπήδητο φράγμα ύψους 1 m και μήκους 7 m που έχει κατασκευαστεί σε υψόμετρο 871 m. Στη συνέχεια μέσω αγωγού προσαγωγής οδηγούνται στο σταθμό παραγωγής. Η ετήσια παραγωγή ηλεκτρικής ενέργειας ανέρχεται σε 7,2 GWh.[34]

Εικόνα 6.3: Σχηματική απεικόνιση σημείων ΜΥΗΕ Δίστρατου

Το ΜΥΗΕ λειτουργεί ως εξής:

- Τα νερά συλλέγονται στο τεχνητό υπερπήδητο φράγμα που έχει κατασκευαστεί στην χαράδρα της επαρχιακής οδού Σαμαρίνας-Δίστρατου.
Εικόνα 6.4: Υπερπήδητο Φράγμα [35]

- Στη συνέχεια τα νερά από το υπερπήδητο φράγμα μέσω αγωγού από χαλυβδοσωλήνα ελικοειδούς ραφής και διάμετρο Φ 600 οδηγούνται στον σταθμό παραγωγής.

Εικόνα 6.5: Αγωγός προσαγωγής [35]

- Το νερό αφού εισέρθει στον υδροστρόβιλο στη συνέχεια μέσω του αγωγού φυγής οδηγείται στην κοίτη του ποταμού Αώου.[34]
Εικόνα 6.6: Αγωγός Απαγωγής [35]

Για τη σωστή και ασφαλή λειτουργία της υδροληψίας λαμβάνονται τα παρακάτω μέτρα:

- Δίπλα στο υπερπήδητο φράγμα έχει κατασκευαστεί πλευρικός υπερχειλιστής ώστε σε περίπτωση υπερχείλισης να αποφευχθεί κάποιο πρόβλημα στη θεμελίωση του.

- Ο καθαρισμός του εξαμμωτή από τα φερτά υλικά πραγματοποιείται με το άνοιγμα θυροφράγματος εξόδου κατά διαστήματα ή όταν θα παρατηρηθεί μεγάλη συσσώρευση.

- Πριν ο αγωγός προσαγωγής εισέρθει στο κτήριο του ΜΥΗΕ έχει εγκατασταθεί σχάρα για τη συγκράτηση φερτών υλικών τα οποία αν εισέρχονταν θα μπορούσαν να δημιουργήσουν προβλήματα στα πτερύγια του στροβίλου.[34]

6.2.1 Αγωγός προσαγωγής

Ο αγωγός αυτός χρησιμοποιείται για τη μεταφορά του νερού από τον εξαμμωτή του υπερπήδητου φράγματος στο κτίριο του υδροηλεκτρικού. Είναι κατασκευασμένος από χαλύβδινους σωλήνες διαμέτρου Φ 600, παροχετευτικότητας 0,6 m³/s και συνολικού μήκους 4000 m. Είναι τοποθετημένος στο έδαφος και σε σημεία στα οποία αλλάζει διεύθυνση αγκυρώνεται με ειδικά στηρίγματα από σκυρόδεμα ενώ διαθέτει και διαστολικούς συνδέσμους για την αντιμετώπιση των θερμοκρασιακών διαστολών. Το τελευταίο τμήμα του αγωγού προσαγωγής πριν την είσοδο του κτιρίου αγκυρώνεται με μεταλλικές βάσεις και κολάρα.[34]
6.2.2 Κτήριο ΜΥΗΕ

Το κτήριο του υδροηλεκτρικού σταθμού είναι μονώροφο και ο σκελετός του είναι κατασκευασμένος από σίδηρο. Η μονάδα του στροβίλου και ο υπόλοιπος εξοπλισμός εδράζονται στο δάπεδο του κτιρίου το οποίο είναι από σκυρόδεμα υψηλής αντοχής. Ο πίνακας Μ.Τ εγκαταστάθηκε σε ιδιαίτερο δωμάτιο. Ο μετασχηματιστής ανύψωσης καθώς και ο μετασχηματιστής ιδιοκαταναλώσεων τοποθετήθηκαν σε στεγανό χώρο του κτιρίου για λόγους ασφαλείας.

Για τη συντήρηση του εξοπλισμού έχει εγκατασταθεί βαρούλκο απλής τροχιάς ανύψωσης ικανότητας 15 τόνων. Το βαρούλκο κινείται πάνω σε σιδηροτροχιά από μορφόθλαιμα "Η", κατά μήκος του σταθμού πάνω από τη μονάδα.[34]
6.2.3 Υδροστρόβιλος Σταθμού

Οι στρόβιλοι που έχει εγκατασταθεί είναι τύπου Pelton οριζόντιου άξονα ισχύος 1935 kW. Αποτελείται από ένα ακροφύσιο και εκτροπέα της δέσμης του νερού. Το στροφείο του στροβίλου είναι άμεσα συζευγμένο με τον δρομέα της γεννήτριας. Το ακροφύσιο καθώς και το στροφείο του υδροστροβίλου είναι ολόσωμα και κατασκευασμένα από ανοξείδωτο χάλυβα. Στην είσοδο του στροβίλου υπάρχει σφαιρική δικλείδα ασφαλείας εφοδιασμένη με δικλείδα παράκαμψης για την πλήρωση του στροβίλου πριν την εκκίνηση, καθώς και την απομόνωση του για συντήρηση. Για την εκκένωση του στροβίλου καθώς και του αγωγού υπάρχουν αντίστοιχες δικλείδες που οδηγούν το νερό στη διώρυγα φυγής [34].

Εικόνα 6.9: Εγκατεστημένος υδροστρόβιλος Pelton [35]

Για τη βέλτιστη λειτουργία του υδροστροβίλου Pelton οριζόντιου δρομέα που εγκαταστάθηκε στο ΜΗΥΕ υπολογίστηκαν κάποια κρίσιμα μεγέθη των υδροστροβίλων. Για τον υπολογισμό των μεγεθών αυτών θεωρούμε ως δεδομένες τις ακόλουθες παραμέτρους:

- Παροχή νερού:
 \[Q = 0.6 \text{ m}^3/\text{s} \]

- Ύψος υδατόπτωσης:
 \[H = 374 \text{ m} \]
Έχοντας τις τιμές των δύο αυτών παραμέτρων και θεωρώντας ότι ο αριθμός των ακροφυσίων είναι \(z = 1 \), μπορούμε να υπολογίσουμε τη διάμετρο της δέσμης του νερού με χρήση της σχέσης (3.3). Οπότε η τιμή της διαμέτρου προκύπτει ως εξής:

\[
d = \frac{4 \cdot Q}{z \cdot \pi \cdot \sqrt{2 \cdot g \cdot H}} \quad \rightarrow \quad d = \frac{4 \cdot 0,6}{1 \cdot \pi \cdot \sqrt{2 \cdot 9,81 \cdot 374}} = 0,0945 \, m
\]

Γνωρίζοντας τη διάμετρο της δέσμης του νερού έχουμε τη δυνατότητα καθορισμού του πλάτους των σκαφιδίων του δρομέα με βάση τη μεταξύ τους σχέση όπως αυτή διατυπώνεται στην ενότητα 3.3. Για πλήθος ακροφυσίων ίσο με 1, το πλάτος των σκαφιδίων υπολογίζεται από την ακόλουθη σχέση:

\[
B = 3,1 \cdot d = 3,1 \cdot 0,0945 \, m = 0,2929 \, m
\]

Η διάμετρος της πτερωτής δίνεται από τη σχέση

\[
D = 14 \cdot 0,2929 \, m = 4,10 \, m
\]

Η ταχύτητα περιστροφής της πτερωτής στα σημεία της διαμέτρου, \(u_1 \) λαμβάνει την υποδιπλάσια τιμή σε σχέση με την ταχύτητα της δέσμης νερού. Αρα με χρήση της σχέσης (3.1), η τιμή της δίνεται από την παρακάτω σχέση:

\[
u_1 = \frac{1}{2} \cdot \sqrt{2 \cdot g \cdot H} = \frac{1}{2} \cdot \sqrt{2 \cdot 9,81 \cdot 374} \frac{m}{s} = 42,83 \, m/s
\]

Η ταχύτητα αυτή εκφρασμένη σε rpm λαμβάνει την ακόλουθη τιμή:

\[
n = \frac{60 \cdot u_1}{\pi \cdot D} = \frac{60 \cdot 42,83}{\pi \cdot 4,10} = 199,61 \, rpm
\]

Για να καθορίσουμε τον αριθμό των πόλων της γεννήτριας θα αξιοποιήσουμε τη σχέση υπολογισμού (3.16), θέτοντας την τιμή του πολλαπλασιαστή στροφών ίση με 5. Ετσι η τιμή της ταχύτητας της γεννήτριας λαμβάνει την ακόλουθη τιμή

\[
n_s = 199,61 \cdot 5 = 998,05 \, rpm
\]

Η σχέση της σύγχρονης ταχύτητας με τον αριθμό των πόλων διατυπώνεται βάσει της (3.15).

Οπότε, το ζεύγος πόλων της γεννήτριας ισούται με

\[
p = \frac{60 \cdot f}{n_s} = \frac{60 \cdot 50}{998,05} = 3
\]

Μετά τον υπολογισμό τον αριθμό των πόλων της γεννήτριας απαιτείται ο επανακαθορισμός της ταχύτητας του δρομέα της γεννήτριας:

\[
n_s = \frac{60 \cdot 50}{3} \, rpm = 1000 \, rpm
\]
Στη συνέχεια χρησιμοποιώντας τη σχέση (3.7) υπολογίζουμε τη μηχανική ισχύ του υδροστροβίλου, με την παραδοχή ότι ο συνολικός βαθμός απόδοσης του υδροστροβίλου ισούται με 0,88.

\[P_m = 9,804 * Q * H * n_t = 9,804 * 0,6 * 374 * 0,88 = 1,936 \text{ MW}. \]

Η ίδια τιμή για την μηχανική ισχύ προκύπτει αν χρησιμοποιήσουμε το διάγραμμα της εικόνας 2.17 για τις ίδιες τιμές της παροχής και του ύψους υδατόπτωσης.

Ένα κατάλληλο κριτήριο επιλογής για τον τύπο του υδροστροβίλου που θα χρησιμοποιηθεί σε ένα υδροηλεκτρικό έργο είναι η ειδική ταχύτητα περιστροφής του υδροστροβίλου, η οποία ορίζεται από τη σχέση (3.14). Με χρήση της σχέσης αυτής, η ειδική ταχύτητα για τον υδροστρόβιλο του συγκεκριμένου παραδείγματος λαμβάνει την ακόλουθη τιμή:

\[n_t = \frac{1}{3,815} * 1000 * \sqrt{\frac{1936}{374 * \frac{4}{374}}} = 7,012 \text{ rpm} \]

Πίνακας 6-2: Χαρακτηριστικά υδροστροβίλων Pelton

<table>
<thead>
<tr>
<th>Στοιχεία</th>
<th>Έκαστη Μονάδα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος</td>
<td>Οριζόντιου άξονα</td>
</tr>
<tr>
<td>Αριθμός</td>
<td>1</td>
</tr>
<tr>
<td>Ον. Παροχή (m³/s)</td>
<td>0,6</td>
</tr>
<tr>
<td>Μέγιστο ύψος πτώσης στην ον. παροχή (μΣΥ)</td>
<td>374</td>
</tr>
<tr>
<td>Μέγιστη δυνατή ισχύς στροβίλων (kW)</td>
<td>1936</td>
</tr>
<tr>
<td>Διάμετρος πτερωτής (m)</td>
<td>4,10</td>
</tr>
</tbody>
</table>

6.2.4 Γεννήτρια

Η γεννήτρια που έχει εγκατασταθεί είναι τριφασική, σύγχρονη οριζόντιου άξονα και είναι συνδεδεμένη με το στροφείο του στροβίλου. Η γεννήτρια είναι εφοδιασμένη με ανιχνευτές θερμοκρασίας (PT100) τόσο στα έδρανα όσο και στα τυλίγματα για προστασία από υπερθέρμανση. Επίσης διαθέτει ρυθμιστή τάσης περιστρεφόμενων διόδων χωρίς ψήκτρες καθώς και ρυθμιστή διόρθωσης συντελεστού ισχύος. Τα βασικά χαρακτηριστικά της γεννήτριας φαίνονται στον παρακάτω πίνακα.[34]
Εικόνα 6.10: Σύγχρονη τριφασική γεννήτρια [35]

Πίνακας 6-3: Χαρακτηριστικά Εγκατεστημένης Γεννήτριας

<table>
<thead>
<tr>
<th>Στοιχεία</th>
<th>Έκαστη Μονάδα</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος</td>
<td>Σύγχρονη</td>
</tr>
<tr>
<td>Αρ. φάσεων</td>
<td>3</td>
</tr>
<tr>
<td>Ον. Ισχύς (kVA)</td>
<td>2550</td>
</tr>
<tr>
<td>Τάση λειτουργίας (kV)</td>
<td>0,6</td>
</tr>
<tr>
<td>Ταχύτητα Περιστροφής (Rpm)</td>
<td>1000</td>
</tr>
<tr>
<td>Συχνότητα (Hz)</td>
<td>50</td>
</tr>
<tr>
<td>Βαθμός Προστασίας</td>
<td>IP23</td>
</tr>
<tr>
<td>Υψόμετρο εγκατάστασης (m)</td>
<td>≤1000</td>
</tr>
<tr>
<td>Κλάση μόνωσης</td>
<td>F</td>
</tr>
<tr>
<td>Ανύψωση θερμοκρασίας</td>
<td>B</td>
</tr>
<tr>
<td>Διέγερση</td>
<td>Περιστρεφόμενων διόδων χωρίς ψήκτρες</td>
</tr>
</tbody>
</table>

6.2.5 Ρυθμιστής στροφών

Ο ρυθμιστής στροφών αποτελείται από υδραυλικό και ηλεκτρονικό μέρος. Το υδραυλικό μέρος αποτελείται από μονάδα πίεσης ελαίου που τροφοδοτεί τους υδραυλικούς κυλίνδρους του ακροφυσίου, της δικλείδας εισόδου και του εκτροπέα.

Το ηλεκτρονικό μέρος αποτελείται από ηλεκτρονικές διατάξεις που είναι εγκατεστημένες στον πίνακα ελέγχου. Στον πίνακα ελέγχου φτάνουν όλα τα δεδομένα από τη λειτουργία του σταθμού και αυτομάτως δίνονται οι κατάλληλες εντολές στον ρυθμιστή στροφών για τη λειτουργία του
σταθμού. Εκτός από την αυτόματη λειτουργία υπάρχει και δυνατότητα για χειροκίνητη λειτουργία, απαραίτητη κατά τις δοκιμές λειτουργίας της μονάδος.[34]

6.2.6 Πίνακας ελέγχου και τροφοδοσίας

Ο πίνακας ελέγχου περιλαμβάνει σύστημα αυτοματισμού το οποίο τροφοδοτείται με τάση 24V DC παραγόμενη από ανορθοτή και συσσωρευτή για συνεχή και ασφαλή τροφοδοσία του συστήματος. Επίσης περιλαμβάνει ρυθμιστή ισχύος της μονάδας και διακοπτικά μέσα για την προστασία της γεννήτριας. Ακόμη στην πρόσοψη του πίνακα ελέγχου υπάρχουν ενδεικτικές λυχνίες, ενδεικτικά όργανα μέτρησης καθώς και κομβία με επιλογικούς διακόπτες, για τον άμεσο έλεγχο της μονάδος από ανθρώπινη παρουσία. [35]

![Εικόνα 6.11: Πίνακας ελέγχου και τροφοδοσία](35)

6.2.7 Μετασχηματιστής ανύψωσης Τάσης

Ο μετασχηματιστής που εγκαταστάθηκε για την ανύψωση της τάσης είναι τριφασικός χυτορητίνης στερεού τύπου και τοποθετήθηκε εσωτερικά σε κατάλληλο διαμορφωμένο χώρο. Για την τροφοδότηση των βοηθητικών κυκλωμάτων όταν δεν λειτουργεί ο σταθμός εγκαταστάθηκε βοηθητικός μετασχηματιστής ισχύος 50 KVA. Τα χαρακτηριστικά των εγκατεστημένων μετασχηματιστών φαίνονται στον παρακάτω πίνακα.[34]
Εικόνα 6.12: Μετασχηματιστής ανύψωσης ΜΥΗΕ

Πίνακας 6-4: Χαρακτηριστικά Μ/Σ ΜΥΗΕ

<table>
<thead>
<tr>
<th>Στοιχεία</th>
<th>Μονάδας</th>
<th>Ιδιοκαταναλώσεων</th>
</tr>
</thead>
<tbody>
<tr>
<td>Τύπος εγκ/σης</td>
<td>Εσ. Χώρου</td>
<td>Εσ. Χώρου</td>
</tr>
<tr>
<td>Αριθμός</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Ισχύς (kVA)</td>
<td>2500</td>
<td>50</td>
</tr>
<tr>
<td>Τάση (kV)</td>
<td>0,69/20</td>
<td>0,69/0,4</td>
</tr>
<tr>
<td>Ψέξη</td>
<td>Φυσική κυκλοφορία αέρα</td>
<td>ONAN (Κλειστού τύπου)</td>
</tr>
</tbody>
</table>

6.2.8 Πίνακες Μ.Τ

Οι πίνακες Μ.Τ συνδέουν την πλευρά ανύψωσης της τάσης των μετασχηματιστών ανύψωσης και τροφοδοσίας των βοηθητικών με το δίκτυο της ΔΕΗ. Στους πίνακες αυτούς περιλαμβάνονται για τον έλεγχο της λειτουργίας του μετασχηματιστή ανύψωσης διακόπτης και αποζεύκτης. Έχει εγκατασταθεί σε κατάλληλα διαμορφωμένο χώρο και προστατεύεται με αλεξικεύρανα Μ.Τ που είναι τοποθετημένα στο πεδίο εξόδου προς το δίκτυο.[34]

6.2.9 Σύστημα γείωσης

Το σύστημα γείωσης αποτελείται από πλέγμα γείωσης που δημιουργείται από χάλκινους γυμνούς αγωγούς διαμέτρου 50 mm² με ηλεκτρόδια γείωσης αποτελούμενα από επιψευδαργυρομένο χάλυβα διαμορφωμένο εν θερμώ και φέρουν κατάλληλο ακροδέκτη για την ένωση των αγωγών. Κάθε ηλεκτρική συσκευή και πίνακας διαθέτει κατάλληλης διατομής κοχλία για την σύνδεση με το δίκτυο της γείωσης.[34]
6.2.10 Βοηθητικός Η/Μ εξοπλισμός

Στον υδροηλεκτρικό σταθμό έχουν εγκατασταθεί τα εξής βοηθητικά συστήματα:

Το σύστημα φωτισμού

Το σύστημα ρευματοδοτών

Το σύστημα αλεξικεραυνικής προστασίας

Επίσης για την πυροπροστασία του υδροηλεκτρικού σταθμού έχουν εγκατασταθεί φορητοί πυροσβεστήρες. Η μονάδα συνδέεται με το δίκτυο Μ.Τ μέσω του μετασχηματιστή ανύψωσης. Η γραμμή για την σύνδεση στο δίκτυο Μ.Τ (20 kV) είναι εναέρια και έχει μήκος περίπου 600 m.[34]
ΚΕΦΑΛΑΙΟ 7ο
ΣΥΜΠΕΡΑΣΜΑΤΑ

7.1 Βασικά συμπεράσματα

Αντικείμενο της παρούσας διπλωματικής εργασίας ήταν η μελέτη υδρολεκτρικής εγκατάστασης μικρής ισχύος με υδροστροβίλους Pelton. Τα κυρίωτερα συμπεράσματα που προέκυψαν κατά τη μελέτη συνοψίζονται ως εξής:

- Η υδρολεκτρική ενέργεια είναι μία ανανεώσιμη πηγή ενέργειας με πολλά πλεονεκτήματα σε σχέση με άλλες ανανεώσιμες πηγές ενέργειας και η αξιοποίησή της έχει αυξηθεί τα τελευταία χρόνια στην Ελλάδα, κυρίως λόγω της δημιουργίας αρκετών μικρών υδρολεκτρικών σταθμών.

- Ο σχεδιασμός και η κατασκευή ενός ΜΥΗΕ απαιτεί την υλοποίηση ενός σημαντικού αριθμού τεχνικών έργων (φράγμα, έργα υδροληψίας, αγωγός προσαγωγής, σταθμός παραγωγής) καθώς και την απόκτηση ηλεκτρομηχανολογικού εξοπλισμού (υδροστροβίλος, γεννήτρια, πίνακες ελέγχου, μετασχηματιστής).

- Για την επιλογή του υδροστροβίλου καθοριστικοί παράγοντες είναι η παροχή, το ύψος υδατόπτωσης καθώς και ο ειδικός αριθμός στροφών του υδροστροβίλου.

- Επίσης πριν την επιλογή του υδροστροβίλου Pelton θα πρέπει να υπολογισθούν διάφοροι κατασκευαστικοί παράγοντες, όπως είναι η διάμετρος της δέσμης του νερού(ακροφύσιο), το πλάτος των σκαφιδίων, η διάμετρος της πτερωτής έτσι ώστε ο υδροστρόβιλος που θα επιλεγεί να επιτυγχάνει τη μέγιστη απόδοση.

- Από τη μελέτη που πραγματοποιήσαμε παρατηρήσαμε ότι ο υδροστρόβιλος Pelton παρουσιάζει μεγαλύτερη απόδοση σε υψηλά ύψη υδατόπτωσης και με χαμηλές παροχές νερού.

- Για τη μείωση των επιπτώσεων από την κατασκευή και λειτουργία ενός ΜΥΗΕ πρέπει να τηρούνται συγκεκριμένες προδιαγραφές και να υλοποιούνται τα απαραίτητα τεχνικά
έργα όπως είναι η δημιουργία ιχθυόδρομου για την ελεύθερη μετακίνηση της ιχθυοπανίδας, ο καθαρισμός της υδροληψίας από φερτά υλικά σε τακτά χρονικά διαστήματα, Κλπ.

7.2 Θέματα για περαιτέρω διερεύνηση

Τα θέματα που προέκυψαν με την περάτωση της παρούσας εργασίας και χρήζουν περαιτέρω ανάλυση είναι τα εξής:

- Λήψη μετρήσεων σε πραγματικές συνθήκες λειτουργίας οι οποίες θα συμβάλουν σε μια πληρέστερη μελέτη της λειτουργίας των μικρών υδροηλεκτρικών σταθμών.

- Μια αναλυτικότερη περιγραφή της συμβολής των μικρών υδροηλεκτρικών στην αξιόπιστη λειτουργία του διασυνδεδεμένου συστήματος ηλεκτρικής ενέργειας.

- Μια συγκριτική μελέτη των μικρών υδροηλεκτρικών σε σχέση με άλλες ανανέωσιμες πηγές ενέργειας.

- Μια αναλυτική περιγραφή των πλεονεκτημάτων και μειονεκτημάτων των διαφορετικών τύπων υδροστροβίλου.
ΒΙΒΛΙΟΓΡΑΦΙΑ

[3] Αργυράκης Ι. (2010), "Εκμετάλλευση των Υδροηλεκτρικών Σταθμών ως Έργων Πολλαπλού Σκοπού", Η συμβολή των Υδροηλεκτρικών έργων στον ενεργειακό σχεδιασμό της χώρας, ΤΕΕ και περιφερειακό τμήμα Ηπείρου του ΤΕΕ

[8] Καράγιωργας Μ., Ζαχαρίας Μ., Κύρκου Α. (2010), "Οδηγός για το περιβάλλον", Ανανεώσιμες Πηγές Ενέργειας, Αθήνα, WWF Ελλάς

[10] Παπαντώνης Δ.(2016), "Μικρά υδροηλεκτρικά έργα", Εισαγωγή, σελ 4, Εκδόσεις Τσότρας, Αθήνα

[19] Οικονόμου Λ., Φώτης Γ.(2010), "Εισαγωγή στις υψηλές τάσεις", Τεχνολογία και Εφαρμογές Υψηλών Τάσεων, σελ 204,205, Εκδόσεις Τζιόλα, Θεσσαλονίκη.

[21] Rob's Pelton Place on the net: http://www.oldpelton.net/history/

[26] Παπαντώνης Δ. (2016), "Μικρά υδροηλεκτρικά έργα", Μελέτη, Κατασκευή και παραλαβή μικρών ΥΗΕ, σελ 405 έως 412, Εκδόσεις Τσότρας, Αθήνα

[29] Μαμάσης Ν., Στεφανάκος Ι. (2013), "Εισαγωγή στην Ενεργειακή Τεχνολογία, Υδροηλεκτρική ενέργεια", Διδακτικές Σημειώσεις Προπτυχιακού, Τμήματος Πολιτικών Μηχανικών, Τομέας Υδάτινων Πόρων και Περιβάλλοντος, Εθνικού Μετσόβιου Πολυτεχνείου, Αθήνα

[33] Μετεο. Μετεωρολογικός σταθμός Χ/Κ Βασιλίτσας http://stratus.meteo.noa.gr/front

[34] ΠΙΝΔΟΣ ΕΝΕΡΓΕΙΑΚΗ Α.Ε. «Ενημερωτικό Σημείωμα Ενεργειακού Ομίλου Πίνδος Ενεργειακή Α.Ε»

ΠΑΡΑΡΤΗΜΑ

Φωτογραφικό υλικό από ΜΥΗΕ της Ελλάδας

ΜΥΗΕ Γλαύκο Πάτρας

Εικόνα Π.1: Εξωτερική όψη κτηρίου ΜΥΗΕ

Εικόνα Π.2: Εσωτερική όψη του κτηρίου ΜΥΗΕ
Εικόνα Π.3: Εξωτερική όψη του κτηρίου ΜΥΗΕ

Εικόνα Π.4: Εσωτερική όψη κτηρίου ΜΥΗΕ
Φωτογραφικό Υλικό Υδροστροβίλων Pelton

Εικόνα Π.5: Σκαφίδιο στροφείου υδροστροβίλου Pelton

Εικόνα Π.6: Στροφείο υδροστροβίλου Pelton
Εικόνα Π.7: Υδροστρόβιλος Pelton οριζόντιου άξονα 3 ακροφυσίων

Εικόνα Π.8: Υδροστρόβιλος Pelton κάθετου άξονα 4 ακροφυσίων