Complementary Silicon Power Transistors

- ... designed for general-purpose switching and amplifier applications.
- DC Current Gain $h_{FE} = 20-70 @ I_C = 4 Adc$
- Collector–Emitter Saturation Voltage VCE(sat) = 1.1 Vdc (Max) @ IC = 4 Adc
- Excellent Safe Operating Area

MAXIMUM RATINGS

Rating	Symbol	Value	Unit
Collector–Emitter Voltage	VCEO	60	Vdc
Collector–Emitter Voltage	VCER	70	Vdc
Collector–Base Voltage	V _{CB}	100	Vdc
Emitter–Base Voltage	V _{EB}	7	Vdc
Collector Current — Continuous	۱ _C	15	Adc
Base Current	۱ _B	7	Adc
Total Power Dissipation @ T _C = 25°C Derate above 25°C	PD	115 0.657	Watts W/°C
Operating and Storage Junction Temperature Range	TJ, T _{stg}	-65 to +200	°C

*Motorola Preferred Device

15 AMPERE POWER TRANSISTORS COMPLEMENTARY SILICON 60 VOLTS 115 WATTS

CASE 1-07 TO-204AA (TO-3)

MOTOROLA

THERMAL CHARACTERISTICS

Characteristic	Symbol	Max	Unit
Thermal Resistance, Junction to Case	R _{θJC}	1.52	°C/W

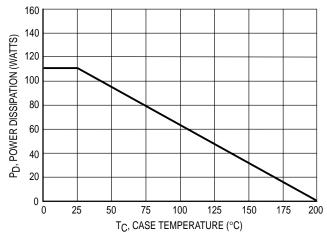


Figure 1. Power Derating

Preferred devices are Motorola recommended choices for future use and best overall value.

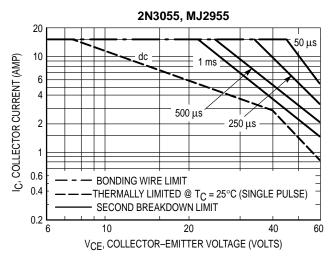
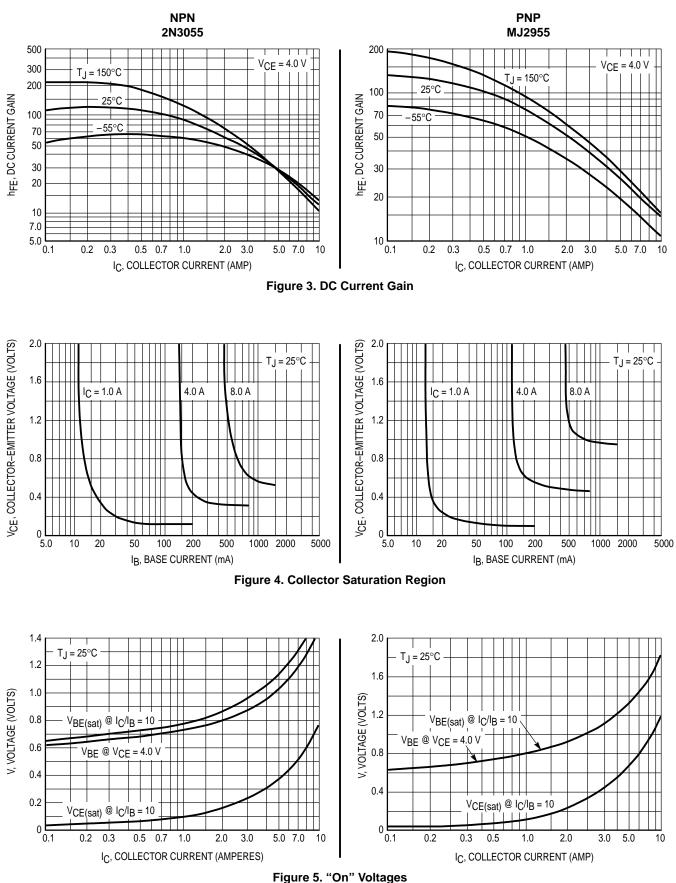
2N3055 MJ2955

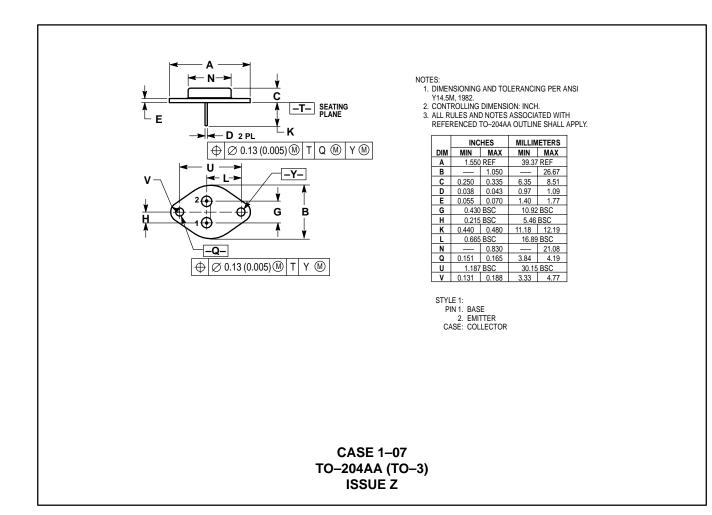
ELECTRICAL CHARACTERISTICS (T_C = 25°C unless otherwise noted)

Characteristic	Symbol	Min	Max	Unit
OFF CHARACTERISTICS			•	
Collector–Emitter Sustaining Voltage (1) ($I_C = 200 \text{ mAdc}, I_B = 0$)	VCEO(sus)	60	_	Vdc
Collector–Emitter Sustaining Voltage (1) (I _C = 200 mAdc, R _{BE} = 100 Ohms)	VCER(sus)	70	—	Vdc
Collector Cutoff Current ($V_{CE} = 30 \text{ Vdc}, I_B = 0$)	ICEO	_	0.7	mAdc
Collector Cutoff Current (V _{CE} = 100 Vdc, V _{BE(off)} = 1.5 Vdc) (V _{CE} = 100 Vdc, V _{BE(off)} = 1.5 Vdc, T _C = 150 °C)	ICEX		1.0 5.0	mAdc
Emitter Cutoff Current ($V_{BE} = 7.0 \text{ Vdc}, I_{C} = 0$)	IEBO	_	5.0	mAdc
ON CHARACTERISTICS (1)				
DC Current Gain (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc) (I _C = 10 Adc, V _{CE} = 4.0 Vdc)	hFE	20 5.0	70 —	_
Collector–Emitter Saturation Voltage ($I_C = 4.0 \text{ Adc}, I_B = 400 \text{ mAdc}$) ($I_C = 10 \text{ Adc}, I_B = 3.3 \text{ Adc}$)	VCE(sat)	_	1.1 3.0	Vdc
Base–Emitter On Voltage (I _C = 4.0 Adc, V _{CE} = 4.0 Vdc)	V _{BE(on)}	—	1.5	Vdc
SECOND BREAKDOWN			•	
Second Breakdown Collector Current with Base Forward Biased (V_{CE} = 40 Vdc, t = 1.0 s, Nonrepetitive)	I _{S/b}	2.87	-	Adc
DYNAMIC CHARACTERISTICS				
Current Gain — Bandwidth Product ($I_C = 0.5 \text{ Adc}$, $V_{CE} = 10 \text{ Vdc}$, f = 1.0 MHz)	fT	2.5	_	MHz
*Small–Signal Current Gain (I _C = 1.0 Adc, V_{CE} = 4.0 Vdc, f = 1.0 kHz)	h _{fe}	15	120	
*Small–Signal Current Gain Cutoff Frequency (V _{CE} = 4.0 Vdc, I _C = 1.0 Adc, f = 1.0 kHz)	fhfe	10	-	kHz

* Indicates Within JEDEC Registration. (2N3055)

(1) Pulse Test: Pulse Width \leq 300 µs, Duty Cycle \leq 2.0%.


Figure 2. Active Region Safe Operating Area

There are two limitations on the power handling ability of a transistor: average junction temperature and second breakdown. Safe operating area curves indicate $I_{C} - V_{CE}$ limits of the transistor that must be observed for reliable operation; i.e., the transistor must not be subjected to greater dissipation than the curves indicate.

The data of Figure 2 is based on $T_C = 25^{\circ}C$; $T_{J(pk)}$ is variable depending on power level. Second breakdown pulse limits are valid for duty cycles to 10% but must be derated for temperature according to Figure 1.

PACKAGE DIMENSIONS

Motorola reserves the right to make changes without further notice to any products herein. Motorola makes no warranty, representation or guarantee regarding the suitability of its products for any particular purpose, nor does Motorola assume any liability arising out of the application or use of any product or circuit, and specifically disclaims any and all liability, including without limitation consequential or incidental damages. "Typical" parameters can and do vary in different applications. All operating parameters, including "Typicals" must be validated for each customer application by customer's technical experts. Motorola does not convey any license under its patent rights nor the rights of others. Motorola products are not designed, intended, or authorized for use as components in systems intended for surgical implant into the body, or other applications intended to support or sustain life, or for any other application in which the failure of the Motorola product could create a situation where personal injury or death may occur. Should Buyer purchase or use Motorola products for any such unintended or unauthorized application, Buyer shall indemnify and hold Motorola and its officers, employees, subsidiaries, affiliates, and distributors harmless against all claims, costs, damages, and expenses, and reasonable attorney fees arising out of, directly or indirectly, any claim of personal injury or death associated with such unintended or unauthorized use, even if such claim alleges that Motorola was negligent regarding the design or manufacture of the part. Motorola and (\widehat{M}) are registered trademarks of Motorola, Inc. Motorola, Inc. is an Equal Opportunity/Affirmative Action Employer.

How to reach us:

USA/EUROPE: Motorola Literature Distribution; P.O. Box 20912; Phoenix, Arizona 85036. 1–800–441–2447 JAPAN: Nippon Motorola Ltd.; Tatsumi–SPD–JLDC, Toshikatsu Otsuki, 6F Seibu–Butsuryu–Center, 3–14–2 Tatsumi Koto–Ku, Tokyo 135, Japan. 03–3521–8315

MFAX: RMFAX0@email.sps.mot.com - TOUCHTONE (602) 244-6609 INTERNET: http://Design-NET.com

 \Diamond

HONG KONG: Motorola Semiconductors H.K. Ltd.; 8B Tai Ping Industrial Park, 51 Ting Kok Road, Tai Po, N.T., Hong Kong. 852–26629298

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

TECHNICAL DATA

PNP POWER SILICON TRANSISTOR

Qualified per MIL-PRF-19500/514

Devices

2N6274

2N6277

Qualified Level

JAN JANTX JANTXV

MAXIMUM RATINGS				
Ratings	Symbol	2N6274	2N6277	Unit
Collector-Emitter Voltage	V _{CEO}	100	150	Vdc
Collector-Base Voltage	V _{CBO}	120	180	Vdc
Emitter-Base Voltage	V _{EBO}	6	.0	Vdc
Base Current	IB	2	0	Adc
Collector Current	I _C	5	0	Adc
Total Power Dissipation (a) $T_C = +25^0 C^{(1)}$ (b) $T_C = +100^0 C^{(2)}$	P _T	25	50	W
@ $T_{\rm C} = +100^{0} {\rm C}^{(2)}$		14	43	W
Operating & Storage Junction Temperature Range	T _j , T _{stg}	-65 to	o +200	⁰ C
THERMAL CHARACTERISTICS				
Characteristics	Symbol	Μ	ax.	Unit
Thermal Resistance, Junction-to-Case	$R_{\theta JC}$	0	.7	⁰ C/W

*See appendix A for package outline

1) Derate linearly 1.43 W/ 0 C between T_C = +25 0 C and T_C = +200 0 C

ELECTRICAL CHARACTERISTICS ($T_c = 25^{\circ}C$ unless otherwise noted)

	Symbol	Min.	Max.	Unit
2N6274	V _{(BR)CEO}	100		Vdc
2N6277		150		
2N6274	I _{CEO}		50	μAdc
2N6277			50	
2N6274	I _{CEX}		10	μAdc
2N6277			10	
	т		100	
	IEBO		100	μAdc
2N6274	I _{CBO}		10	μAdc
2N6277			10	
	2N6277 2N6274 2N6277 2N6274 2N6277 2N6274	2N6274 V(BR)CEO 2N6277 ICEO 2N6274 ICEO 2N6277 ICEO 2N6274 ICEO 2N6277 ICEO 2N6274 ICEO 2N6277 ICEN 2N6274 ICEN 2N6274 ICEN 2N6277 IEBO 2N6274 ICBO	2N6274 V(BR)CEO 100 2N6277 ICEO 150 2N6274 ICEO ICEO 2N6277 ICEX ICEX 2N6274 ICEX ICEX	2N6274 V(BR)CEO 100 2N6277 ICEO 150 2N6274 ICEO 50 2N6277 ICEO 10 2N6274 ICEO 10 2N6277 ICEX 10 2N6274 ICEX 10 2N6277 ICEX 10 2N6274 ICEN 100 2N6277 ICEN 100

1-800-446-1158 / (978) 794-1666 / Fax: (978) 689-0803

2N6274, 2N6277 JAN SERIES

ELECTRICAL CHARACTERISTIC	CS (con't)				
Characteristic	es	Symbol	Min.	Max.	Unit
ON CHARACTERISTICS (2)					
Forward-Current Transfer Ratio					
$I_{C} = 1.0 \text{ Adc}, V_{CE} = 4.0 \text{ Vdc}$			50		
$I_C = 20$ Adc, $V_{CE} = 4.0$ Vdc		h _{FE}	30	120	
$I_C = 50$ Adc, $V_{CE} = 4.0$ Vdc			10		
Collector-Emitter Saturation Voltage					
$I_{C} = 20 \text{ Adc}, I_{B} = 2.0 \text{ Adc}$		V _{CE(sat)}		1.0	Vdc
$I_C = 50$ Adc, $I_B = 10$ Adc				3.0	
Base-Emitter Saturation Voltage		V		1.8	Vdc
$I_C = 20$ Adc, $I_B = 2.0$ Adc		V _{BE(sat)}		1.0	vuc
DYNAMIC CHARACTERISTICS					
Magnitude of Common Emitter Small-Sig	gnal Short-Circuit				
Forward Current Transfer Ratio		h _{fe}	3.0	12	
$I_{\rm C} = 1.0 \text{ Adc}, V_{\rm CE} = 10 \text{ Vdc}, f = 10 \text{ MH}$	Z				
Output Capacitance		C _{obo}		600	pF
$V_{CB} = 10 \text{ Vdc}, I_E = 0, f = 1.0 \text{ MHz}$		Cobo		000	PI
SWITCHING CHARACTERISTICS	5				
Turn-On Time		ton		0.5	He
$V_{CC} = 80 \text{ Vdc}; I_C = 20 \text{ Adc}; I_B = 2.0 \text{ Adc}$	c	Oli		0.5	μs
Turn-Off Time		toff		1.05	He
$V_{CC} = 80 \text{ Vdc}; I_C = 20 \text{ Adc}; I_{B1} = -I_{B2} =$	2.0 Adc	011		1.05	μs
SAFE OPERATING AREA					
DC Tests					
$T_{\rm C} = +25^{0}$ C, 1 Cycle, t = 1.0 s					
Test 1					
$V_{CE} = 5.0 \text{ Vdc}, I_C = 50 \text{ Adc}$	All Types				
Test 2					
$V_{CE} = 8.6$ Vdc, $I_{C} = 165$ mAdc	All Types				
Test 3					
$V_{CE} = 80$ Vdc, $I_C = 29$ mAdc	2N6274				
	Test 4				
$V_{CE} = 120 \text{ Vdc}, I_{C} = 110 \text{ mAdc}$	2N6277				

(2) Pulse Test: Pulse Width = 300μ s, Duty Cycle $\leq 2.0\%$.

This datasheet has been download from:

www.datasheetcatalog.com

Datasheets for electronics components.

SEMICONDUCTOR®

BC337/338

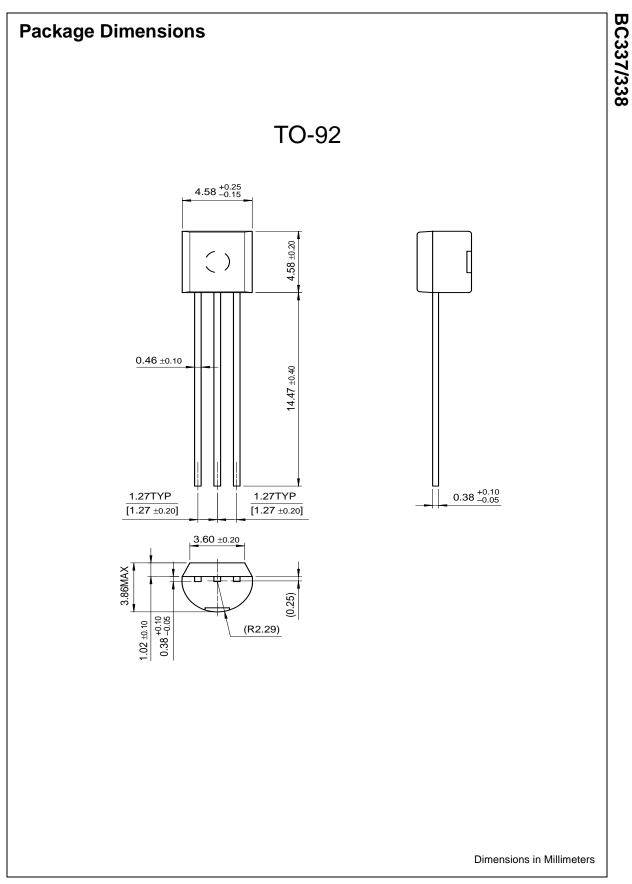
Switching and Amplifier Applications

- Suitable for AF-Driver stages and low power output stages
- Complement to BC327/BC328

1. Collector 2. Base 3. Emitter

NPN Epitaxial Silicon Transistor

Absolute Maximum Ratings T_a=25°C unless otherwise noted


Symbol	Parameter	Value	Units
V _{CES}	Collector-Emitter Voltage		
	: BC337	50	V
	: BC338	30	V
V _{CEO}	Collector-Emitter Voltage		
	: BC337	45	V
	: BC338	25	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current (DC)	800	mA
P _C	Collector Power Dissipation	625	mW
TJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	-55 ~ 150	°C

Electrical Characteristics T_a=25°C unless otherwise noted

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
BV _{CEO}	Collector-Emitter Breakdown Voltage	I _C =10mA, I _B =0				
	: BC337		45			V
	: BC338		25			V
BV _{CES}	Collector-Emitter Breakdown Voltage	I _C =0.1mA, V _{BE} =0				
	: BC337		50			V
	: BC338		30			V
BV _{EBO}	Emitter-Base Breakdown Voltage	I _E =0.1mA, I _C =0	5			V
I _{CES}	Collector Cut-off Current					
	: BC337	V _{CE} =45V, I _B =0		2	100	nA
	: BC338	V _{CE} =25V, I _B =0		2	100	nA
h _{FE1}	DC Current Gain	V _{CE} =1V, I _C =100mA	100		630	
h _{FE2}		V _{CE} =1V, I _C =300mA	60			
V _{CE} (sat)	Collector-Emitter Saturation Voltage	I _C =500mA, I _B =50mA			0.7	V
V _{BE} (on)	Base Emitter On Voltage	V _{CE} =1V, I _C =300mA			1.2	V
f _T	Current Gain Bandwidth Product	V _{CE} =5V, I _C =10mA, f=50MHz		100		MHz
C _{ob}	Output Capacitance	V _{CB} =10V, I _E =0, f=1MHz		12		pF

h_{FE} Classification

Classification	16	25	40
h _{FE1}	100 ~ 250	160 ~ 400	250 ~ 630
h _{FE2}	60-	100-	170-

TRADEMARKS

The following are registered and unregistered trademarks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

The Power Franch		ImpliedDisconnect [™] ISOPLANAR [™] LittleFET [™] MicroFET [™] MiCROWIRE [™] MICROWIRE [™] MSX [™] MSXPro [™] OCX [™] OCX [™] OCXPro [™] OPTOLOGIC [®] OPTOLOGIC [®]	PACMAN [™] POP [™] Power247 [™] PowerTrench [®] QFET [™] QS [™] QT Optoelectronics [™] Quiet Series [™] RapidConfigure [™] RapidConnect [™] SILENT SWITCHER [®] SMAPT STAPT [™]	SPM [™] Stealth [™] SuperSOT [™] -3 SuperSOT [™] -6 SuperSOT [™] -8 SyncFET [™] TinyLogic [™] TruTranslation [™] UHC [™] UltraFET [®] VCX [™]
Programmable Ac	tive Droop™	OPTOPLANAR™	SMART START™	

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS.

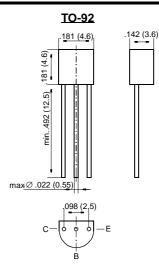
LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

1. Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, or (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.

2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.


PRODUCT STATUS DEFINITIONS

Definition of Terms

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data, and supplementary data will be published at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserves the right to make changes at any time without notice in order to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontinued by Fairchild semiconductor. The datasheet is printed for reference information only.

BC327, BC328

Small Signal Transistors (PNP)

Dimensions in inches and (millimeters)

FEATURES

- PNP Silicon Epitaxial Planar Transistors for switching and amplifier applications. Especially suit-able for AF-driver stages and low-power output stages.
- These types are also available subdivided into three groups -16, -25, and -40, according to their DC current gain. As complementary types, the NPN transistors BC337 and BC338 are recommended.
- On special request, these transistors are also manufactured in the pin configuration TO-18.

MECHANICAL DATA

Case: TO-92 Plastic Package **Weight:** approx. 0.18 g

MAXIMUM RATINGS AND ELECTRICAL CHARACTERISTICS

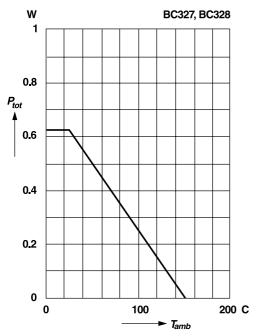
Ratings at 25 °C ambient temperature unless otherwise specified

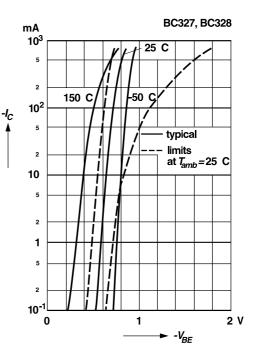
		Symbol	Value	Unit
Collector-Emitter Voltage	BC327 BC328	-V _{CES} -V _{CES}	50 30	V V
Collector-Emitter Voltage	BC327 BC328	–V _{CEO} –V _{CEO}	45 25	V V
Emitter-Base Voltage		–V _{EBO}	5	V
Collector Current		-I _C	800	mA
Peak Collector Current		–I _{CM}	1	А
Base Current		-I _B	100	mA
Power Dissipation at T _{amb} = 25 °C		P _{tot}	625 ¹⁾	mW
Junction Temperature		Tj	150	°C
Storage Temperature Range		T _S	-65 to +150	°C

BC327, BC328

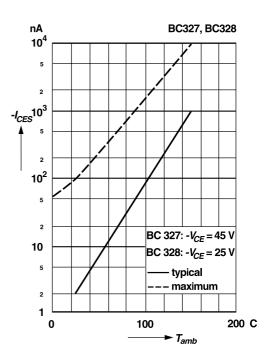
ELECTRICAL CHARACTERISTICS

Ratings at 25 °C ambient temperature unless otherwise specified


	Symbol	Min.	Тур.	Max.	Unit
DC Current Gain at –V _{CE} = 1 V, –I _C = 100 mA					
Current Gain Group at $-V_{CE} = 1 \text{ V}, -I_{C} = 300 \text{ mA}$	p-16 h _{FE} -25 h _{FE} -40 h _{FE}	100 160 250	160 250 400	250 400 630	_ _ _
Current Gain Grou	p-16 h _{FE} -25 h _{FE} -40 h _{FE}	60 100 170	130 200 320	_ _ _	_ _ _
Thermal Resistance Junction to Ambient A	ir R _{thJA}	_	-	2001)	K/W
at $-V_{CE} = 25 \text{ V}$ BC at $-V_{CE} = 45 \text{ V}$, $T_{amb} = 125 \text{ °C}$ BC	C327 –I _{CES} C328 –I _{CES} C327 –I _{CES} C328 –I _{CES}	- - - -	2 2 - -	100 100 10 10	nA nA μA μA
0	C327 – C328 – V _{(BR)CEO} – V _{(BR)CEO}	45 25			V V
0	C327 – C328 V _{(BR)CES} – V _{(BR)CES}	50 30	-		V V
Emitter-Base Breakdown Voltage at –I _E = 0.1 mA	– V _{(BR)EBO}	5	_	_	V
Collector Saturation Voltage at –I _C = 500 mA, –I _B = 50 mA	-V _{CEsat}	-	-	0.7	V
Base-Emitter Voltage at –V _{CE} = 1 V, –I _C = 300 mA	-V _{BE}	-	-	1.2	V
Gain-Bandwidth Product at –V _{CE} = 5 V, –I _C = 10 mA, f = 50 MHz	f _T	-	100	-	MHz
Collector-Base Capacitance	C _{CBO}	_	12	_	pF


RATINGS AND CHARACTERISTIC CURVES BC327, BC328

Admissible power dissipation versus ambient temperature


Valid provided that leads are kept at ambient temperature at a distance of 2 mm from case

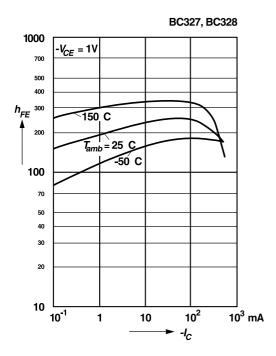
Collector current versus base-emitter voltage

Collector-emitter cutoff current versus ambient temperature

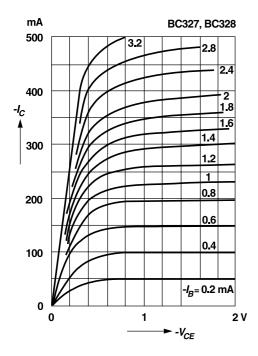
K/W BC327, BC328 10³ 5 2 r_{thA} 10² 0.5 5 0.2 2 0.1 10 0.05 5 0.02 2 0.01 1 0.005 5 = 0 2 10 $10^{-6} 10^{-5} 10^{-4} 10^{-3} 10^{-2} 10^{-1} 1$ 10 10² s ► t_p

Pulse thermal resistance

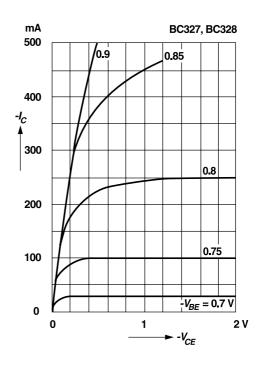
Valid provided that leads are kept at ambient temperature

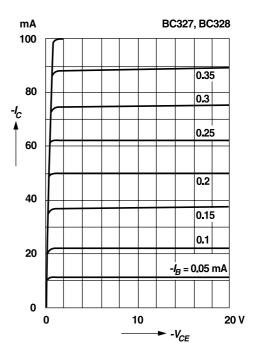

versus pulse duration

at a distance of 2 mm from case

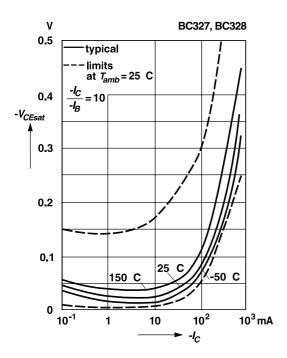

GENERAL SEMICONDUCTOR®

RATINGS AND CHARACTERISTIC CURVES BC327, BC328

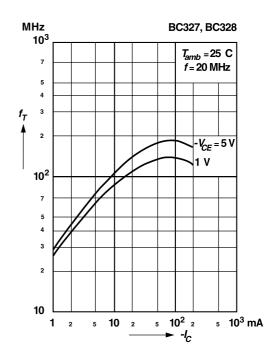

DC current gain versus collector current

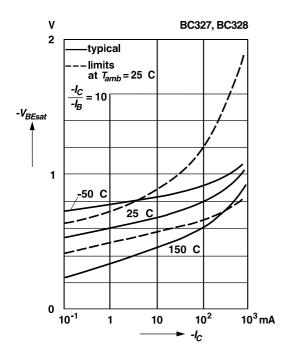

Common emitter collector characteristics

Common emitter collector characteristics



Common emitter collector characteristics




RATINGS AND CHARACTERISTIC CURVES BC327, BC328

Collector saturation voltage versus collector current

Base saturation voltage versus collector current

Gain-bandwidth product versus collector current

SMPS control circuit

SG3524

DESCRIPTION

This monolithic integrated circuit contains all the control circuitry for a regulating power supply inverter or switching regulator. Included in a 16-pin dual-in-line package is the voltage reference, error amplifier, oscillator, pulse-width modulator, pulse steering flip-flop, dual alternating output switches and current-limiting and shut-down circuitry. This device can be used for switching regulators of either polarity, transformer-coupled DC-to-DC converters, transformerless voltage doublers and polarity converters, as well as other power control applications. The SG3524 is designed for commercial applications of 0° C to +70°C.

FEATURES

- Complete PWM power control circuitry
- Single ended or push-pull outputs
- Line and load regulation of 0.2%
- 1% maximum temperature variation
- Total supply current is less than 10mA
- Operation beyond 100kHz

ORDERING INFORMATION

D, F, N Packages				
INVERT INPUT 1 NON-INV INPUT 2 OSC OUTPUT 3 (+)CL SENSE 4 (-)CL SENSE 5 RT 6 CT 7		16 VREF 15 VIN 14 EMITTER B 13 COLLECTOR B 12 COLLECTOR A 11 EMITTER A 10 SHUTDOWN		
GROUND 8		9 COMPENSATION		
TOP VIEW			SL00174	

PIN CONFIGURATION

Figure 1. Pin Configuration

DESCRIPTION	TEMPERATURE RANGE	ORDER CODE	DWG #
16-Pin Plastic Dual In-Line Package (DIP)	0 to +70°C	SG3524N	SOT38-4
16-Pin Ceramic Dual In-Line Package (CERDIP)	0 to +70°C	SG3524F	0582B
16-Pin Small Outline (SO) Package	0 to +70°C	SG3524D	SOT109-1

BLOCK DIAGRAM

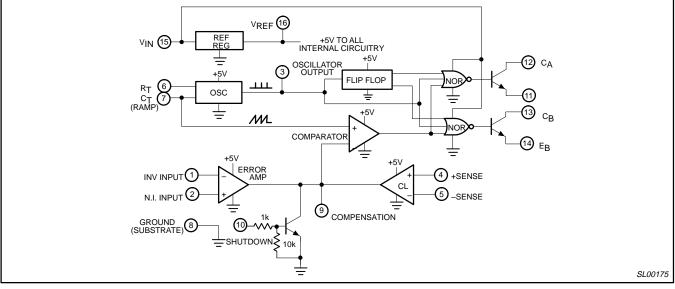


Figure 2. Block Diagram

SG3524

ABSOLUTE MAXIMUM RATINGS

SYMBOL	PARAMETER	RATING	UNIT
V _{IN}	Input voltage	40	V
I _{OUT}	Output current (each output)	100	mA
I _{REF}	Reference output current	50	mA
	Oscillator charging current	5	mA
PD	Power dissipation		
	Package limitation	1000	mW
	Derate above 25°C	8	mW/°C
T _A	Operating temperature range	0 to +70	°C
T _{STG}	Storage temperature range	-65 to +150	°C

DC ELECTRICAL CHARACTERISTICS

 $T_A{=}0^\circ C$ to +70°C, $V_{IN}{=}20V\!,$ and f=20kHz, unless otherwise specified.

	DADAMETED	TEST CONDITIONS		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS	Min	Тур	Max	UNIT
Referenc	e section	-				
V _{OUT}	Output voltage		4.6	5.0	5.4	V
	Line regulation	V _{IN} =8 to 40V		10	30	mV
	Load regulation	I _L =0 to 20mA		20	50	mV
	Ripple rejection	f=120Hz, T _A =25°C		66		dB
I _{SC}	Short circuit current limit	V _{REF} =0, T _A =25°C		100		mA
	Temperature stability	Over operating temperature range		0.3	1	%
	Long-term stability	T _A =25°C		20		mV/kHz
Oscillato	r section	•				
f _{MAX}	Maximum frequency	C _T =0.001 μF, R _T =2kΩ		300		kHz
	Initial accuracy	R _T and C _T constant		5		%
	Voltage stability	V _{IN} =8 to 40V, T _A =25°C			1	%
	Temperature stability	Over operating temperature range			2	%
	Output amplitude	Pin 3, T _A =25°C		3.5		V _P
	Output pulse width	C _T =0.01 μF, T _A =25°C		0.5		μs
Error am	plifier section					
V _{OS}	Input offset voltage	V _{CM} =2.5V		2	10	mV
I _{BIAS}	Input bias current	V _{CM} =2.5V		2	10	μA
	Open-loop voltage gain		68	80		dB
V _{CM}	Common-mode voltage	T _A =25°C	1.8		3.4	V
CMRR	Common-mode rejection ratio	T _A =25°C		70		dB
BW	Small-signal bandwidth	A _V =0dB, T _A =25°C		3		MHz
V _{OUT}	Output voltage	T _A =25°C	0.5		3.8	V
	tor section					
	Duty cycle	% each output "ON"	0		45	%
	Input threshold	Zero duty cycle		1		V
	Input threshold	Maximum duty cycle		3.5		V
I _{BIAS}	Input bias current			1	1	μA
Current I	imiting section		_	-	-	-
	Sense voltage	Pin 9=2V with error amplifier set for maximum out, $T_A=25^{\circ}C$	180	200	220	mV
	Sense voltage T.C.			0.2		mV/°C
V _{CM}	Common-mode voltage		-1		+1	V

SMPS control circuit

SG3524

DC ELECTRICAL CHARACTERISTICS (Continued)

 $T_A = 0^{\circ}C$ to +70°C, $V_{IN} = 20V$, and f = 20kHz, unless otherwise specified.

	DADAMETED	TEAT CONDITIONS		LIMITS		
SYMBOL	PARAMETER	TEST CONDITIONS		Тур	Max	UNIT
Output se	ection (each output)					
	Collector-emitter voltage (breakdown)		40			V
	Collector-leakage current	V _{CE} =40V		0.1	50	μΑ
	Saturation voltage	I _C =50mA		1	2	V
	Emitter output voltage	V _{IN} =20V	17	18		V
t _R	Rise time	R _C =2kΩ, T _A =25°C		0.2		μs
t _F	Fall time	R _C =2kΩ, T _A =25°C		0.1		μs
Total star	ndby current					
	(excluding oscillator charging current, error and current limit dividers, and with outputs open)	V _{IN} =40V		8	10	mA

THEORY OF OPERATION

Voltage Reference

An internal series regulator provides a nominal 5V output which is used both to generate a reference voltage and is the regulated source for all the internal timing and controlling circuitry. This regulator may be bypassed for operation from a fixed 5V supply by connecting Pins 15 and 16 together to the input voltage. In this configuration, the maximum input voltage is 6.0V.

This reference regulator may be used as a 5V source for other circuitry. It will provide up to 50mA of current itself and can easily be expanded to higher currents with an external PNP as shown in Figure 3.

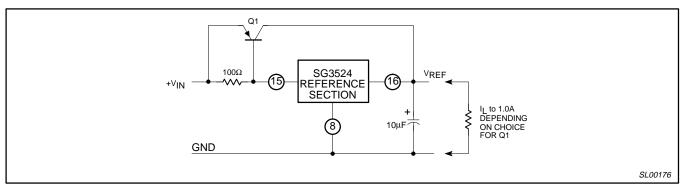


Figure 3. Expanded Reference Current Capability

TEST CIRCUIT

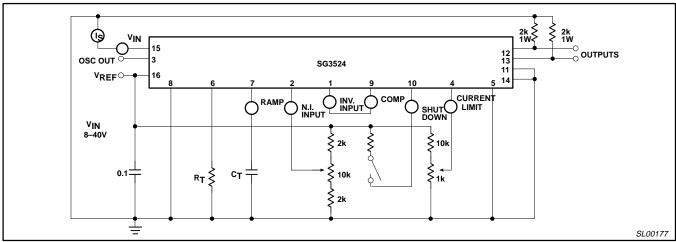


Figure 4. Test Circuit

SG3524

SMPS control circuit

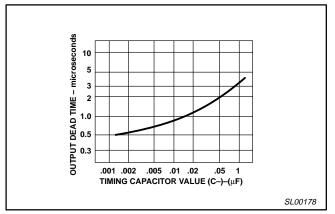
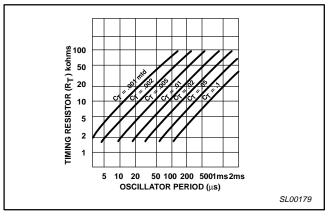
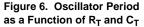




Figure 5. Output Stage Dead Time as a Function of the Timing Capacitor Value

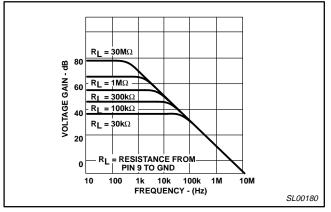


Figure 7. Amplifiers Open-Loop Gain as a Function of Frequency and Loading on Pin 9

Oscillator

The oscillator in the SG3524 uses an external resistor (R_T) to establish a constant charging current into an external capacitor (C_T). While this uses more current than a series-connected RC, it provides a linear ramp voltage on the capacitor which is also used as a reference for the comparator. The charging current is equal to 3.6 V \div RT and should be kept within the approximate range of 30µA to 2mA; i.e., 1.8k<RT<100k.

The range of values for C_T also has limits as the discharge time of C_T determines the pulse-width of the oscillator output pulse. This pulse is used (among other things) as a blanking pulse to both outputs to insure that there is no possibility of having both outputs on simultaneously during transitions. This output dead time relationship is shown in Figure 5. A pulse width below approximately 0.5µs may allow false triggering of one output by removing the blanking pulse prior to the flip-flop's reaching a stable state. If small values of C_T must be used, the pulse-width may still be expanded by adding a shunt capacitance (\equiv 100pF) to ground at the oscillator output. [(Note: Although the oscillator output is a convenient oscilloscope sync input, the cable and input capacitance may increase the blanking pulse-width slightly.)] Obviously, the upper limit to the pulse width is determined by the maximum duty cycle acceptable. Practical values of C_T fall between 0.001 and 0.1 µF.

The oscillator period is approximately t=R_TC_T where t is in microseconds when R_T= Ω and C_T= μ F. The use of Figure 6 will allow selection of R_T and C_T for a wide range of operating frequencies. Note that for series regulator applications, the two outputs can be connected in parallel for an effective 0-90% duty cycle and the frequency of the oscillator is the frequency of the output. For push-pull applications, the outputs are separated and the flip-flop divides the frequency such that each output's duty cycle is 0-45% and the overall frequency is one-half that of the oscillator.

External Synchronization

If it is desired to synchronize the SG3524 to an external clock, a pulse of \cong +3V may be applied to the oscillator output terminal with R_TC_T set slightly greater than the clock period. The same considerations of pulse-width apply. The impedance to ground at this point is approximately 2k Ω .

If two or more SG3524s must be synchronized together, one must be designated as master with its R_TC_T set for the correct period. The slaves should each have an R_TC_T set for approximately 10% longer period than the master with the added requirement that C_T (slave)=one-half C_T (master). Then connecting Pin 3 on all units together will insure that the master output pulse—which occurs first and has a wider pulse width—will reset the slave units.

Error Amplifier

This circuit is a simple differential input transconductance amplifier. The output is the compensation terminal, Pin 9, which is a high-impedance node ($R_L \cong 5M\Omega$). The gain is

$$A_V = g_M R_L = \frac{8 I_C R_L}{2kT} \approx 0.002 R_L$$

and can easily be reduced from a nominal of 10,000 by an external shunt resistance from Pin 9 to ground, as shown in Figure 7.

In addition to DC gain control, the compensation terminal is also the place for AC phase compensation. The frequency response curves of Figure 7 show the uncompensated amplifier with a single pole at approximately 200Hz and a unity gain crossover at 5MHz.

Typically, most output filter designs will introduce one or more additional poles at a significantly lower frequency. Therefore, the best stabilizing network is a series RC combination between Pin 9 and ground which introduces a zero to cancel one of the output filter poles. A good starting point is $50k\Omega$ plus 0.001μ F.

SMPS control circuit

SG3524

One final point on the compensation terminal is that this is also a convenient place to insert any programming signal which is to override the error amplifier. Internal shutdown and current limit circuits are connected here, but any other circuit which can sink 200µA can pull this point to ground, thus shutting off both outputs.

While feedback is normally applied around the entire regulator, the error amplifier can be used with conventional operational amplifier feedback and is stable in either the inverting or non-inverting mode. Regardless of the connections, however, input common-mode limits must be observed or output signal inversions may result. For conventional regulator applications, the 5V reference voltage must be divided down as shown in Figure 8. The error amplifier may also be used in fixed duty cycle applications by using the unity gain configuration shown in the open-loop test circuit.

Current Limiting

The current limiting circuitry of the SG3524 is shown in Figure 9.

By matching the base-emitter voltages of Q1 and Q2, and assuming a negligible voltage drop across R_1 :

Threshold= $V_{BE}(Q1)+I_1R_2-V_{BE}(Q2)$

 $=I_1R_2 \cong 200mV$

Although this circuit provides a relatively small threshold with a negligible temperature coefficient, there are some limitations to its use, the most important of which is the $\pm 1V$ common-mode range which requires sensing in the ground line. Another factor to consider is that the frequency compensation provided by R₁C₁ and Q1 provides a roll-off pole at approximately 300Hz.

Since the gain of this circuit is relatively low, there is a transition region as the current limit amplifier takes over pulse width control from the error amplifier. For testing purposes, threshold is defined as the input voltage required to get 25% duty cycle with the error amplifier signaling maximum duty cycle.

In addition to constant current limiting, Pins 4 and 5 may also be used in transformer-coupled circuits to sense primary current and to shorten an output pulse, should transformer saturation occur. Another application is to ground Pin 5 and use Pin 4 as an additional shutdown terminal: i.e., the output will be off with Pin 4 open and on when it is grounded. Finally, foldback current limiting can be provided with the network of Figure 10. This circuit can reduce the short-circuit current (I_{SC}) to approximately one-third the maximum available output current (I_{MAX}).

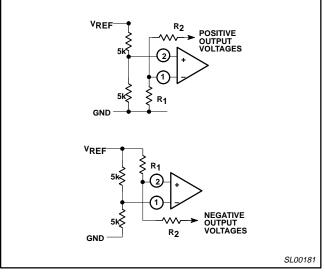


Figure 8. Error Amplifier Biasing Circuits

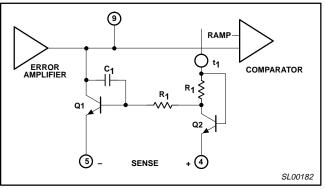


Figure 9. Current Limiting Circuitry of the SG3524

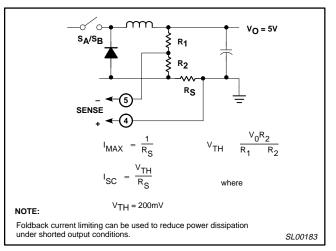
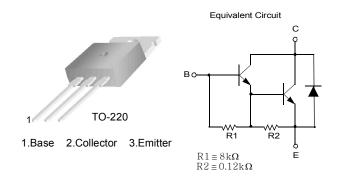


Figure 10. Foldback Current Limiting


TIP120/TIP121/TIP122 — NPN Epitaxial Darlington Transistor

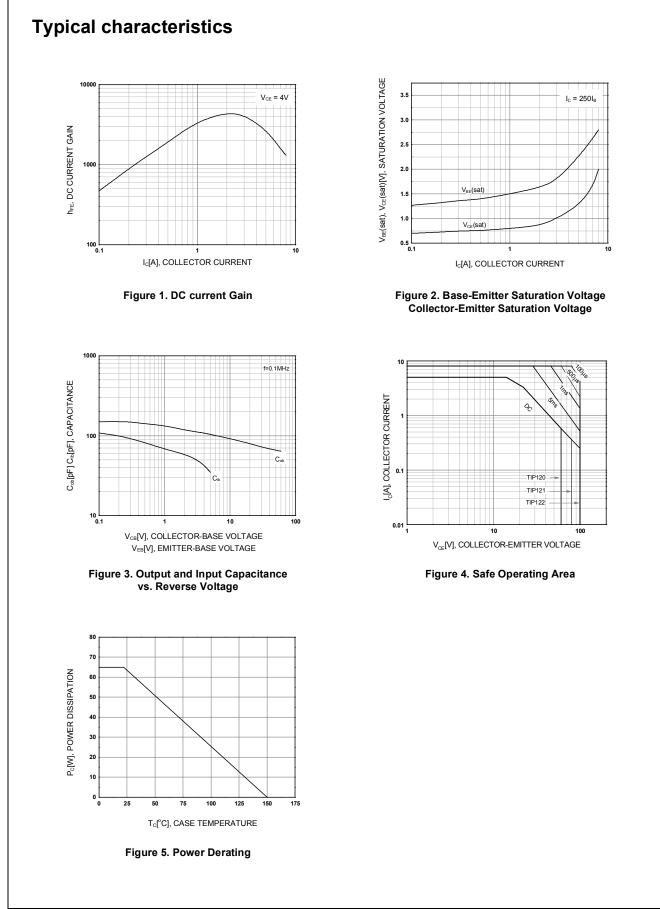
TIP120/TIP121/TIP122 NPN Epitaxial Darlington Transistor

Medium Power Linear Switching Applications

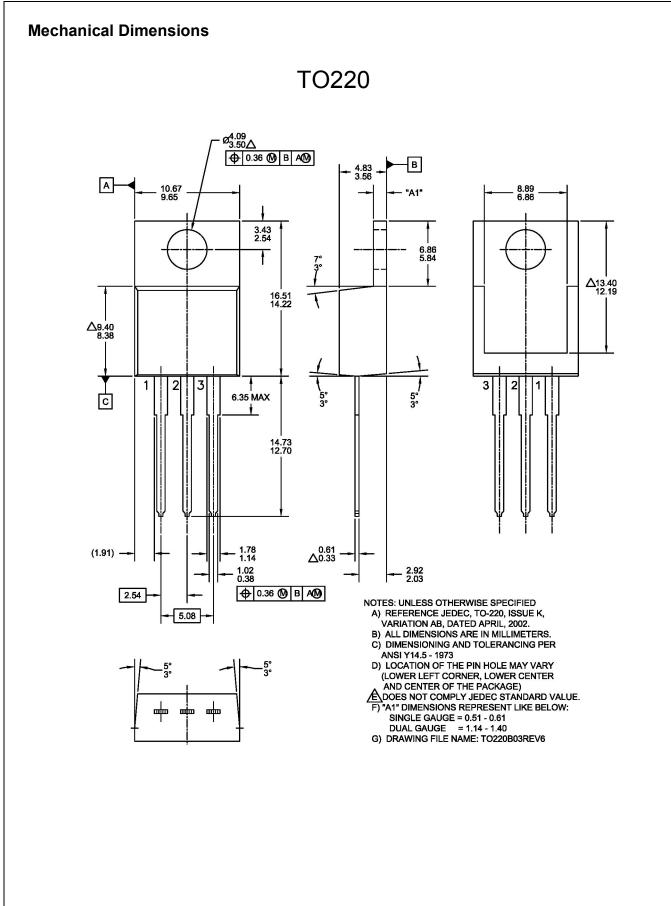
Complementary to TIP125/126/127

Absolute Maximum Ratings* T_a = 25°C unless otherwise noted

Symbol	Parameter	Ratings	Units
V _{CBO}	Collector-Base Voltage : TIP120	60	V
	: TIP121	80	V
	: TIP122	100	V
V _{CEO}	Collector-Emitter Voltage : TIP120	60	V
020	: TIP121	80	V
	: TIP122	100	V
V _{EBO}	Emitter-Base Voltage	5	V
I _C	Collector Current (DC)	5	А
I _{CP}	Collector Current (Pulse)	8	А
I _B	Base Current (DC)	120	mA
P _C	Collector Dissipation (T _a =25°C)	2	W
	Collector Dissipation (T _C =25°C)	65	W
ТJ	Junction Temperature	150	°C
T _{STG}	Storage Temperature	- 65 ~ 150	°C


* These ratings are limiting values above which the serviceability of any semiconductor device may be impaired.

October 2008


TIP120/TIP121/TIP122	
- NPN Epitaxial	
Darlington Trans	
nsistor	

Symbol	Parameter	Test Condition	Min.	Тур.	Max.	Units
V _{CEO} (sus)	Collector-Emitter Sustaining Voltage					
	: TIP120	I _C = 100mA, I _B = 0	60			V
	: TIP121		80			V
	: TIP122		100			V
I _{CEO}	Collector Cut-off Current					
	: TIP120	V _{CE} = 30V, I _B = 0			0.5	mA
	: TIP121	$V_{CE} = 40V, I_{B} = 0$			0.5	mA
	: TIP122	$V_{CE} = 50V, I_{B} = 0$			0.5	mA
I _{CBO}	Collector Cut-off Current					
020	: TIP120	V _{CB} = 60V, I _E = 0			0.2	mA
	: TIP121	$V_{CB} = 80V, I_{E} = 0$			0.2	mA
	: TIP122	$V_{CB} = 100V, I_E = 0$			0.2	mA
I _{EBO}	Emitter Cut-off Current	V _{BE} = 5V, I _C = 0			2	mA
h _{FE}	* DC Current Gain	$V_{CE} = 3V_{IC} = 0.5A$	1000			
		$V_{CE} = 3V, I_{C} = 3A$	1000			
V _{CE} (sat)	* Collector-Emitter Saturation Voltage	I _C = 3A, I _B = 12mA			2.0	V
		$I_{\rm C} = 5A, I_{\rm B} = 20mA$			4.0	V
V _{BE} (on)	* Base-Emitter On Voltage	V _{CE} = 3V, I _C = 3A			2.5	V
C _{ob}	Output Capacitance	V _{CB} = 10V, I _E = 0, f = 0.1MHz			200	pF

© 2007 Fairchild Semiconductor Corporation TIP120/TIP121/TIP122 Rev. 1.0.0

TIP120/TIP121/TIP122 — NPN Epitaxial Darlington Transistor

SEMICONDUCTOR

TRADEMARKS

The following are registered and unregistered trademarks and service marks Fairchild Semiconductor owns or is authorized to use and is not intended to be an exhaustive list of all such trademarks.

ACEx [®] Build it Now [™] CorePLUS [™] CROSSVOLT [™] CTL [™] Current Transfer Logic [™] EcoSPARK [®] Fairchild [®] Fairchild [®] Fairchild Semiconductor [®] FACT Quiet Series [™] FACT [®] FAST [®] FastvCore [™] FPS [™] FRFET [®] Global Power Resource SM	Green FPS [™] e-Series [™] GTO [™] <i>i-Lo</i> [™] IntelliMAX [™] ISOPLANAR [™] MegaBuck [™] MICROCOUPLER [™] MicroFET [™] MicroFET [™] MicroPak [™] MillerDrive [™] Motion-SPM [™] OPTOLOGIC [®] OPTOPLANAR [®] [®] PDP-SPM [™] Power220 [®]	Power247 [®] POWEREDGE [®] Power-SPM™ PowerTrench [®] Programmable Active Droop™ QFET [®] QS™ QT Optoelectronics™ Quiet Series™ RapidConfigure™ SMART START™ SPM [®] STEALTH™ SuperFET™ SuperSOT™-3 SuperSOT™-6	SuperSOT [™] -8 SyncFET [™] The Power Franchise [®] P TinyBoost [™] TinyBoost [™] TinyBuck [™] TinyLogic [®] TINYOPTO [™] TinyPower [™] TinyPWM [™] TinyWire [™] µSerDes [™] UHC [®] UniFET [™] VCX [™]
--	---	---	--

DISCLAIMER

FAIRCHILD SEMICONDUCTOR RESERVES THE RIGHT TO MAKE CHANGES WITHOUT FURTHER NOTICE TO ANY PRODUCTS HEREIN TO IMPROVE RELIABILITY, FUNCTION, OR DESIGN. FAIRCHILD DOES NOT ASSUME ANY LIABILITY ARISING OUT OF THE APPLICATION OR USE OF ANY PRODUCT OR CIRCUIT DESCRIBED HEREIN; NEITHER DOES IT CONVEY ANY LICENSE UNDER ITS PATENT RIGHTS, NOR THE RIGHTS OF OTHERS. THESE SPECIFICATIONS DO NOT EXPAND THE TERMS OF FAIRCHILD'S WORLDWIDE TERMS AND CONDITIONS, SPECIFICALLY THE WARRANTY THEREIN, WHICH COVERS THESE PRODUCTS.

LIFE SUPPORT POLICY

FAIRCHILD'S PRODUCTS ARE NOT AUTHORIZED FOR USE AS CRITICAL COMPONENTS IN LIFE SUPPORT DEVICES OR SYSTEMS WITHOUT THE EXPRESS WRITTEN APPROVAL OF FAIRCHILD SEMICONDUCTOR CORPORATION.

As used herein:

- Life support devices or systems are devices or systems which, (a) are intended for surgical implant into the body, or (b) support or sustain life, and (c) whose failure to perform when properly used in accordance with instructions for use provided in the labeling, can be reasonably expected to result in significant injury to the user.
- 2. A critical component is any component of a life support device or system whose failure to perform can be reasonably expected to cause the failure of the life support device or system, or to affect its safety or effectiveness.

Datasheet Identification	Product Status	Definition
Advance Information	Formative or In Design	This datasheet contains the design specifications for product development. Specifications may change in any manner without notice.
Preliminary	First Production	This datasheet contains preliminary data; supplementary data will be pub- lished at a later date. Fairchild Semiconductor reserves the right to make changes at any time without notice to improve design.
No Identification Needed	Full Production	This datasheet contains final specifications. Fairchild Semiconductor reserve the right to make changes at any time without notice to improve design.
Obsolete	Not In Production	This datasheet contains specifications on a product that has been discontin- ued by Fairchild semiconductor. The datasheet is printed for reference infor- mation only.

PRODUCT STATUS DEFINITIONS

